Synlett 2017; 28(07): 868-872
DOI: 10.1055/s-0036-1588134
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free N9-Amidoalkylation of Purines with N,N-Dialkylamides

Saiyu Xu
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. of China   Email: denlin@scut.edu.cn
,
Zheng Luo
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. of China   Email: denlin@scut.edu.cn
,
Ziyang Jiang
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. of China   Email: denlin@scut.edu.cn
,
Dongen Lin*
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. of China   Email: denlin@scut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 November 2016

Accepted after revision: 13 December 2016

Publication Date:
12 January 2017 (online)


Abstract

A novel method for the selective N9-amidoalkylation of purines using N,N-dialkylamides as alkylation reagents via activation of sp3 C–H bond adjacent to an amide nitrogen atom has been developed in the presence of KI and tert-butyl hydroperoxide (TBHP). This method was simple to operate and provided series of purine derivatives in moderate to excellent yield.

Supporting Information

 
  • References and Notes

    • 1a Topczewski JJ, Sanford MS. Chem. Sci. 2015; 6: 70
    • 1b Zatolochnaya OV, Gevorgyan V. Nat. Chem. 2014; 6: 661
    • 1c Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 1d Zhang SY, Zhang FM, Tu YQ. Chem. Soc. Rev. 2011; 40: 1937
    • 1e Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 2a Zhang Y, Fu H, Jiang Y, Zhao Y. Org. Lett. 2007; 9: 3813
    • 2b Huang R, Xie C, Huang L, Liu J. Tetrahedron 2013; 69: 577
    • 2c Truong T, Nguyen KD, Doan SH, Phan NT. S. Appl. Catal., A 2016; 510: 27
    • 2d Liu X, Zhang Y, Wang L, Fu H, Jiang Y, Zhao Y. J. Org. Chem. 2008; 73: 6207
    • 2e Saidulu G, Kumar RA, Reddy KR. Tetrahedron Lett. 2015; 56: 4200
    • 2f Xia Q, Chen W. J. Org. Chem. 2012; 77: 9366
    • 2g Dian L, Wang S, Zhang-Negrerie D, Du Y, Zhao K. Chem. Commun. 2014; 50: 11738
    • 2h Lao ZQ, Zhong WH, Lou QH, Li ZJ, Meng XB. Org. Biomol. Chem. 2012; 10: 7869
    • 2i Guo H.-M, Xia C, Niu H.-Y, Zhang X.-T, Kong S.-N, Wang D.-C, Qu G.-R. Adv. Synth. Catal. 2011; 353: 53
  • 4 Phan NT. S, Vu PH. L, Nguyen TT. J. Catal. 2013; 306: 38
  • 5 Tang RY, Xie YX, Xie YL, Xiang JN, Li JH. Chem. Commun. 2011; 47: 12867
    • 6a Bowles WA, Schneider FH, Lewis LR, Robins RK. J. Med. Chem. 1963; 6: 471
    • 6b Doláková P, Dračínský M, Masojídková M, Šolínová V, Kašička V, Holý A. Eur. J. Med. Chem. 2009; 44: 2408
    • 6c Garg R, Gupta SP, Gao H, Babu MS, Debnath AK, Hansch C. Chem. Rev. 1999; 99: 3525
    • 6d Parker WB. Chem. Rev. 2009; 109: 2880
    • 6e Rosemeyer H. Chem. Biodiversity 2004; 1: 361
    • 7a Arico JW, Calhoun AK, Salandria KJ, McLaughlin LW. Org. Lett. 2010; 12: 120
    • 7b Borrmann T, Abdelrahman A, Volpini R, Lambertucci C, Alksnis E, Gorzalka S, Knospe M, Schiedel AC, Cristalli G, Müller CE. J. Med. Chem. 2009; 52: 5974
    • 7c Chen S, Graceffa RF, Boezio AA. Org. Lett. 2016; 18: 16
    • 7d Franchetti P, Abu Sheikha G, Cappellacci L, Grifantini M, De Montis A, Piras G, Loi AG, La Colla P. J. Med. Chem. 1995; 38: 4007
    • 7e Guo HM, Wu YY, Niu HY, Wang DC, Qu GR. J. Org. Chem. 2010; 75: 3863
    • 7f Hilbert GE, Johnson TB. J. Am. Chem. Soc. 1930; 52: 4489
    • 7g Holý A, Dvořáková H, Jindřich Masojídková M, Buděšínský M, Balzarini J, Andrei G, De Clercq E. J. Med. Chem. 1996; 39: 4073
    • 7h Kazimierczuk Z, Cottam HB, Revankar GR, Robins RK. J. Am. Chem. Soc. 1984; 106: 6379
    • 7i Niedballa U, Vorbrueggen H. J. Org. Chem. 1976; 41: 2084
    • 7j Wolf J, Monneret C, Pontikis R, Florent J.-C. Eur. J. Org. Chem. 1998; 2417
  • 8 Zhong M, Robins MJ. J. Org. Chem. 2006; 71: 8901
  • 9 The regioselectivity of this method was clearly identified by NMR, especially the long-range 1H-13C HMBC spectra. The protons in the amidomethylene correlated to C-4 but not to C-5, so that the amidoalkylation was proved to happen regioselectively at N9-position (see the Supporting Information for details).
  • 10 Compound 3a: yield 40.4 mg, 86%; white solid; 1H NMR (400 MHz, CDCl3): δ = 8.55 (s, 1 H), 8.26 (s, 1 H), 5.73 (s, 2 H), 4.20 (s, 3 H), 3.24 (s, 3 H), 2.12 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 172.28, 161.12, 152.30, 152.25, 143.49, 120.78, 54.29, 36.64, 21.64. ESI-HRMS: m/z calcd for C10H13N5NaO2 [M + Na]+: 258.0961; found: 258.0965.
  • 11 The addition of various solvents decreased the yield slightly. Increasing the amount of catalyst and oxidant respectively did not lead to a higher yield. Besides, changes in temperature and reaction time were unfavorable for this reaction (see the Supporting Information for details).
  • 12 Experimental Procedure Purine substrate 1 (0.2 mmol), KI (0.02 mmol, 3.32 mg), dried N,N-dialkylamides 2 (2 mmol, 0.2 mL) and TBHP (0.4 mmol, 70% in water) were successively added into a sealed tube. The resulting mixture was stirred at 80 °C for 10 h. After the reaction finished, the reaction mixture was cooled to r.t. and quenched by the addition of a sat. solution of NaHSO3 (3 mL). The mixture was extracted with CH2Cl2 (3 × 6 mL), the combined organic phases were dried over anhydrous Na2SO4, and the solvent was evaporated under vacuum. Then the residue was purified by flash column chromatography on silica gel or preparative TLC on GF254 to afford the desired product 3.
  • 13 C6-substituted purines were synthesized from 6-chloropurine according to: Huang LK, Cherng YC, Cheng YR, Jang JP, Chao YL, Cherng YJ. Tetrahedron 2007; 63: 5323
  • 14 C2- and C6-substituted purines were synthesized from 2-amido-6-chloropurine according to: Hu Y, Liu M, Lu M. J. Korean Chem. Soc. 2010; 54: 429
    • 15a Dian L, Wang S, Zhang-Negrerie D, Du Y, Zhao K. Chem. Commun. 2014; 50: 11738
    • 15b Ma L, Wang X, Yu W, Han B. Chem. Commun. 2011; 47: 11333
    • 15c Sun J, Wang Y, Pan Y. J. Org. Chem. 2015; 80: 8945
    • 15d Uyanik M, Suzuki D, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2011; 50: 5331
    • 15e Xie J, Jiang H, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979
    • 15f Xue Q, Xie J, Li H, Cheng Y, Zhu C. Chem. Commun. 2013; 49: 3700
    • 16a Lao ZQ, Zhong WH, Lou QH, Li ZJ, Meng XB. Org. Biomol. Chem. 2012; 10: 7869
    • 16b Lv Y, Li Y, Xiong T, Lu Y, Liu Q, Zhang Q. Chem. Commun. 2014; 50: 2367
    • 16c Parumala SK. R, Peddinti RK. Tetrahedron Lett. 2016; 57: 1232
    • 16d Wei W, Zhang C, Xu Y, Wan X. Chem. Commun. 2011; 47: 10827
    • 16e Yan Y, Zhang Y, Feng C, Zha Z, Wang Z. Angew. Chem. Int. Ed. 2012; 51: 8077
    • 16f Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274