Synlett 2017; 28(06): 701-704
DOI: 10.1055/s-0036-1588124
letter
© Georg Thieme Verlag Stuttgart · New York

Application of a Ruthenium-Catalyzed Allylation–Cycloisomerization Cascade to the Synthesis of (±)-Herbindole A

Nora Thies
Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
,
Martin Stürminger
Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
,
Edgar Haak*
Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany   Email: edgar.haak@ovgu.de
› Author Affiliations
Further Information

Publication History

Received: 14 October 2016

Accepted after revision: 28 November 2016

Publication Date:
15 December 2016 (online)


Abstract

A short and efficient total synthesis of the cytotoxic cyclopent[g]indole alkaloid (±)-herbindole A from dihydromesitylene has been achieved by incorporating a ruthenium-catalyzed allylation–cycloisomerization cascade reaction as the key step. The protocol has also been applied to the synthesis of the unnatural trans-epimer of the marine natural product.

Supporting Information

 
  • References

    • 1a Wang Y, Zhang L, Lu P, Gao H, Zhang J, Xu P.-F, Wei H In Catalytic Cascade Reactions . Xu P.-F, Wang W. John Wiley & Sons; Hoboken: 2014: 145-331
    • 1b Negishi E.-I, Wang G, Zhu G, von Zezschwitz P, De Meijere A, Patil NT, Yamamoto Y, Balme G, Bouyssi D, Monteiro N, Müller TJ. J, Pérez-Castells J, Aubert C, Fensterbank L, Gandon V, Malacria M, Bruneau C, Dérien S, Dixneuf PH In Metal Catalyzed Cascade Reactions . Müller TJ. J. Springer; Berlin: 2006: 1-340
    • 1c Tietze LF, Brasche B, Gericke K In Domino Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2006: 359-493
    • 1d Kumar K In Concepts and Case Studies in Chemical Biology . Waldmann H, Janning P. Wiley-VCH; Weinheim: 2014: 391-414
    • 1e Nicolaou KC, Edmonds DJ, Bulger PB. Angew. Chem. Int. Ed. 2006; 43: 7134 ; Angew. Chem. 2006, 118, 7292
    • 1f Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556 ; Angew. Chem. 2014, 126, 2590
    • 2a Haak E.; Eur. J. Org. Chem.; 2016, in press; DOI: 10.1002/ejoc.201601076.
    • 2b Kumari AL. S, Reddy AS, Swamy KC. K. Org. Biomol. Chem. 2016; 14: 6651
    • 2c Watson ID. G, Toste FD. Chem. Sci. 2012; 3: 2899
    • 2d Pérez-Galán P, López-Carrillo V, Echavarren AM. Contrib. Sci. 2010; 6: 143
    • 2e Jiménez-Núñez E, Echavarren AM. Chem. Rev. 2008; 108: 3326
    • 2f Michelet V, Toullec PY, Genêt J.-P. Angew. Chem. Int. Ed. 2008; 47: 4268 ; Angew. Chem. 2008, 120, 4338
    • 2g Zhang L, Sun J, Kozmin SA. Adv. Synth. Catal. 2006; 348: 2271
    • 2h Bruneau C, Dérien S, Dixneuf PH. Top. Organomet. Chem. 2006; 19: 295
    • 3a Thies N, Haak E. Angew. Chem. Int. Ed. 2015; 54: 4097 ; Angew. Chem. 2015, 127, 4170
    • 3b Thies N, Gerlach M, Haak E. Eur. J. Org. Chem. 2013; 7354
    • 3c Jonek A, Berger S, Haak E. Chem. Eur. J. 2012; 18: 15504
    • 3d Thies N, Hrib CG, Haak E. Chem. Eur. J. 2012; 18: 6302
    • 4a Herb R, Carroll AR, Yoshida WY, Scheuer PJ. Tetrahedron 1990; 46: 3089
    • 4b Capon RJ, MacLeod JK, Scammells PJ. Tetrahedron 1986; 42: 6545
    • 5a Chandrasoma N, Pathmanathan S, Buszek KR. Tetrahedron Lett. 2015; 56: 3507
    • 5b Saito N, Ichimaru T, Sato Y. Org. Lett. 2012; 14: 1914
    • 5c Buszek KR, Brown N, Luo D. Org. Lett. 2009; 11: 201
    • 5d Jackson SK, Kerr MA. J. Org. Chem. 2007; 72: 1405
    • 5e Muratake H, Mikawa A, Saino T, Natsume M. Chem. Pharm. Bull. 1994; 42: 854
    • 5f Muratake H, Mikawa A, Natsume M. Tetrahedron Lett. 1992; 33: 4595
    • 6a Landais Y, Zekri E. Eur. J. Org. Chem. 2002; 4037
    • 6b Landais Y, Zekri E. Tetrahedron Lett. 2001; 42: 6547
    • 7a Ghobril C, Sabot C, Mioskowski C, Baati R. Eur. J. Org. Chem. 2008; 4104
    • 7b Hammar P, Ghobril C, Antheaume C, Wagner A, Baati R, Himo F. J. Org. Chem. 2010; 75: 4728
  • 8 Procedure for the Ruthenium-Catalyzed Key Step: 2-(cis-3,5-Dimethylcyclopent-1-en-1-yl)but-3-yn-2-ol (2; 150 mg, 0.91 mmol) and catalyst A (9 mg, 0.018 mmol) were dissolved in toluene (2 mL) and pyrrole (65 mg, 0.97 mmol) and a solution of TFA in toluene (0.04 M, 0.45 mL) were subsequently added. The mixture was heated for 5 min at 200 °C using microwave irradiation. Evaporation of the solvent and flash chromatography on silica (pentane/Et2O) furnished the purified product 1 (148 mg, 76%) as a slightly yellow powder. 1H NMR (600 MHz, CDCl3): δ = 1.34 (d, J = 7.1 Hz, 3 H), 1.44 (d, J = 7.2 Hz, 3 H), 1.54 (dt, J = 13.0, 2.1 Hz, 1 H), 2.32 (s, 3 H), 2.47 (s, 3 H), 2.69 (dt, J = 13.0, 9.1 Hz, 1 H), 3.38–3.43 (m, 1 H), 3.43–3.49 (m, 1 H), 6.54 (dd, J = 3.2, 2.1 Hz, 1 H), 7.12 (dd, J = 3.2, 2.3 Hz, 1 H), 7.92 (br. s, NH). 13C NMR (150 MHz, CDCl3): δ = 15.5 (CH3), 15.8 (CH3), 23.0 (CH3), 24.0 (CH3), 37.3 (CH), 39.3 (CH), 42.0 (CH2), 101.8 (CH), 123.0 (CH), 123.4 (C), 126.6 (C), 126.8 (C), 127.9 (C), 130.7 (C), 142.2 ppm (C). IR: 3410 (w), 2955 (m), 2925 (m), 2865 (m), 1692 (w), 1655 (m), 1598 (w), 1447 (m), 1372 (w), 1316 (w), 1278 (m), 1073 (w), 723 (m), 701 (s), 638 (m) cm–1. MS (EI): m/z (%) = 214 (38) [M+ + 1], 213 (45) [M+], 199 (75), 198 (100), 183 (30), 182 (32), 105 (29). HRMS: m/z [M+] calcd for C15H19N: 213.1517; found: 213.1517.