Synlett 2017; 28(06): 729-733
DOI: 10.1055/s-0036-1588122
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Indoles from 2-Vinylanilines with PIFA or TFA and Quinones

Mingzhong Wu
State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, Gansu, P. R. of China   Email: [email protected]
,
Rulong Yan*
State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, Gansu, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 10 October 2016

Accepted after revision: 25 November 2016

Publication Date:
16 December 2016 (online)


Abstract

The cyclizations involved in the synthesis of different indoles from 2-vinylanilines with PIFA {[bis(trifluoroacetoxy)iodo]benzene} and quinones have been developed under mild conditions. Various substituents on 2-vinylanilines induced good compatibility and gave the desired products in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Kochanowska KA. J, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1b Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491
    • 1c Kawasaki T, Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1d Kaushik N, Attri P, Kumar N, Kim C, Verma A, Choi E. Molecules 2013; 18: 6620
    • 2a Knochel P, Dohle W, Gommermann N, Kneisel FF, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 2b Sheppard TD. Org. Biomol. Chem. 2009; 7: 1043
    • 2c Kambe N, Iwasaki T, Terao J. J. Chem. Soc. Rev. 2011; 40: 4937
    • 3a Shiri M. Chem. Rev. 2012; 112: 3508
    • 3b Platon M, Amardeil R, Djakovitch L, Hierso JC. Chem. Soc. Rev. 2012; 41: 3929
    • 3c Hegedus LS. Angew. Chem. Int. Ed. 1988; 27: 1113
    • 3d Inman M, Moody C. J. Chem. Sci. 2013; 4: 29
    • 3e Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: 215
    • 4a Daugulis O, Do HQ, Shabashov DA. Chem. Res. 2009; 42: 1074
    • 4b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 4c Wang H, Li Y, Sun F, Feng Y, Jin K.-X. J. Org. Chem. 2008; 73: 8639
    • 4d Taillefer M, Xia N, Ouali A, Wang A. Angew. Chem. Int. Ed. 2007; 46: 934
    • 4e Taillefer M, Xia N, Ouali A, Wang A. Angew. Chem. Int. Ed. 2007; 119: 952
    • 4f Youn SW, Ko TY, Jang MJ, Jang SS. Adv. Synth. Catal. 2015; 357: 227
    • 5a Hegedus LS, Allen GF, Bozell JJ, Waterman EL. J. Am. Chem. Soc. 1978; 100: 5800
    • 5b Harrington PJ, Hegedus LS. J. Org. Chem. 1984; 49: 2657
    • 5c Harrington PJ, Hegedus LS, McDaniel KF. J. Am. Chem. Soc. 1987; 109: 4335
    • 5d Fra L, Millán A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 126: 7477
    • 5e Fra L, Millán A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349
    • 5f Youn SW, Lee SR. Org. Biomol. Chem. 2015; 13: 4652
    • 5g Youn SW, Bihn JH, Kim BS. Org. Lett. 2011; 13: 3738
    • 5h Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14048
    • 5i Gu Z.-Y, Liu C.-G, Wang S.-Y, Ji S.-J. Org. Lett. 2016; 18: 2379
    • 5j Liwosz TW, Chemler SR. Chem. Eur. J. 2013; 19: 12771
  • 6 Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
  • 7 Jang YH, Youn SW. Org. Lett. 2014; 16: 3720
    • 8a Ackermann L, Lygin AV. Org. Lett. 2012; 14: 764
    • 8b Lu B, Luo Y, Liu L, Ye L, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 123: 8508
    • 8c Lu B, Luo Y, Liu L, Ye L, Wang Y, Zhang L. Angew. Chem. Int. Ed. 2011; 50: 8358
    • 8d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 8e Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 121: 9786
    • 8f Modha SG, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
  • 9 General Procedure for the Synthesis of Substituted Indoles from 2-Vinylanilines with Oxidant PIFA: The 2-(1-phenylvinyl)aniline (1a; 0.2 mmol) and PIFA (2.4 mmol) were added weighed into a 10-mL vial equipped with a magnetic stir bar. 1,4-dioxane (1 mL) was added, and this mixture was stirred under air. After being stirred at r.t. for 1.5 h, the solvent was evaporated in vacuum and the crude product was purified by column chromatography, eluting with petroleum ether–EtOAc (10:1) to afford the desired product 2a as a colorless solid (32 mg, 78% yield); mp 75–77 °C. 1H NMR (400 MHz, CDCl3): δ = 8.01 (br s, 1 H), 7.93–7.95 (d, J = 8.0 Hz, 1 H), 7.64–7.67 (m, 2 H), 7.41–7.45 (m, 2 H), 7.33–7.35 (d, J = 8.0 Hz, 1 H), 7.16–7.29 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ = 136.72, 135.64, 128.87, 127.56, 126.07, 125.79, 122.48, 121.90, 120.41, 119.88, 118.32, 111.52. HRMS: m/z [M + H]+ calcd for C14H12N: 194.0964; found: 194.0960.
  • 10 General Procedure for the Synthesis of Indole Derivatives from 2-Vinylanilines with Oxidant Quinones: The 2-(1-phenylvinyl)aniline (1a; 0.2 mmol), benzoquinone (1.2 equiv) and TFA (0.2 equiv) were added weighed into a 10-mL vial equipped with a magnetic stir bar, and DMA (1 mL) was added, this mixture was stirred under Ar. After being stirred at 70 °C for 5 h, the reaction mixture was cooled to r.t. and then extracted with EtOAc (3 × 15 mL). The combined organic phase was dried over anhyd Na2SO4. The solvent was evaporated in vacuum and the crude product was purified by column chromatography, eluting with petroleum ether–EtOAc (10:1) to afford the desired product 3a as a light pink solid; yield: 34 mg (80%); mp 82–84 °C. 1H NMR (400 MHz, CDCl3): δ = 7.98–8.00 (m, 1 H), 7.69–7.72 (m, 2 H), 7.42–7.48 (m, 4 H), 7.35–7.39 (m, 2 H), 7.21–7.32 (m, 3 H), 6.93–6.95 (d, J = 8 Hz, 2 H), 5.24 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.74, 135.59, 134.62, 132.26, 129.09, 127.82, 127.59, 127.18, 127.07, 126.51, 126.32, 122.95, 119.58, 118.22, 116.46, 111.96. HRMS: m/z [M + H]+ calcd for C20H16NO: 286.1227; found: 286.1225. 4-(5-Methoxy-3-phenyl-1H-indol-1-yl)phenol (3e): light pink solid; yield: 25 mg (64%); mp 89–91 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.94 (br s, 1 H), 6.96 (s, 1 H), 6.90–6.92 (d, J = 8.0 Hz, 2 H), 6.54–6.65 (m, 6 H), 6.42–6.46 (m, 1 H), 6.14–6.16 (d, J = 8.0 Hz, 2 H), 6.04–6.06 (m, 1 H), 2.98 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 156.74, 155.05, 135.60, 132.11, 130.90, 129.43, 127.66, 127.28, 126.91, 126.23, 126.05, 117.07, 116.65, 112.84, 112.11, 101.71, 55.92. HRMS: m/z [M + H]+ calcd for C21H18NO2: 316.1332; found: 316.1334.