Synthesis 2017; 49(02): 383-390
DOI: 10.1055/s-0036-1588089
paper
© Georg Thieme Verlag Stuttgart · New York

Development of an Amino Acid/Hydroxy Oxime Dual Catalyst System for Highly Stereoselective Direct Asymmetric Aldol Reactions in the Presence of Water

Moniruzzaman Mridha
a  Department of Natural Sciences, Holmgatan 10, Mid Sweden University, 851 70 Sundsvall, Sweden
b  Department of Chemistry – BMC, Uppsala University, 751 23 Uppsala, Sweden
,
Guangning Ma
a  Department of Natural Sciences, Holmgatan 10, Mid Sweden University, 851 70 Sundsvall, Sweden
,
Carlos Palo-Nieto
a  Department of Natural Sciences, Holmgatan 10, Mid Sweden University, 851 70 Sundsvall, Sweden
,
Samson Afewerki
a  Department of Natural Sciences, Holmgatan 10, Mid Sweden University, 851 70 Sundsvall, Sweden
c  Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden   Email: [email protected]   Email: [email protected]
,
Armando Cordova*
a  Department of Natural Sciences, Holmgatan 10, Mid Sweden University, 851 70 Sundsvall, Sweden
c  Berzelii Center EXSELENT, The Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 30 August 2016

Accepted after revision: 11 October 2016

Publication Date:
04 November 2016 (online)


Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday

Abstract

An eco-friendly dual catalyst system for stereoselective aldol reactions in the presence of water is described. It is based on the cooperative action of acyclic amino acids and H-bond donating hydroxy oxime catalysts. The synthetic utility of this dual catalyst system was further demonstrated by applying it as the key step in the expeditious and highly stereoselective total synthesis of d-lyxo-phytosphingosine (29% overall yield). Here the amino acid/hydroxy oxime system significantly accelerated the direct aldol reactions in the presence of water as compared to organic solvents. The stereo- and chemoselectivity were also significantly increased.

Supporting Information

 
  • References

    • 1a Modern Aldol Reactions . Vol. 1 and 2. Mahrwald R. Wiley-VCH; Weinheim: 2004
    • 1b Kim BM, Williams SF, Masamune S In Comprehensive Organic Synthesis . Vol. 2. Trost BM, Fleming I. Pergamon Press; New York: 1991: 239-275

    • For applications in total synthesis, see:
    • 1c Schetter B, Mahrwald R. Angew. Chem. Int. Ed. 2006; 45: 7506
    • 1d Mukaiyama T. Angew. Chem. Int. Ed. 2004; 43: 5590
    • 1e Evans DA, Fitch DM, Smith TE, Cee VJ. J. Am. Chem. Soc. 2000; 122: 10033
    • 1f Kunick C, Bleeker C, Prühs C, Totzke CS, Kubbutat MH. J, Link A. Bioorg. Med. Chem. Lett. 2006; 16: 2148
    • 1g Jones PS, Smith PW, Hardy GW, Howes PD, Bethell RC. Bioorg. Med. Chem. Lett. 1999; 9: 605

      For selected reviews for enantioselective aldol reaction, see:
    • 3a Asymmetric Organocatalysis . Dalko P. Wiley-VCH; Weinheim: 2007
    • 3b Berkessel A, Gröger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2005
    • 3c Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 3d Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726

      For the early examples of proline-catalyzed direct aldol reactions, see:
    • 4a Hajos ZG, Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 4b Eder U, Sauer R, Wiechert R. Angew. Chem. Int. Ed. 1971; 10: 496
    • 4c Pidathala C, Hoang L, Vignola N, List B. Angew. Chem. Int. Ed. 2003; 42: 2785
    • 4d List B, Lerner RA, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395
    • 5a Córdova A, Zou W, Ibrahem I, Reyes E, Engqvist M, Liao W.-W. Chem. Commun. 2005; 3586
    • 5b Córdova A, Zou W, Dziedzic P, Ibrahem I, Reyes E, Xu Y. Chem. Eur. J. 2006; 12: 5383
    • 5c Dziedzic P, Zou W, Hafren J, Córdova A. Org. Biomol. Chem. 2006; 4: 38
    • 5d Zou W, Ibrahem I, Dziedzic P, Sunden H, Córdova A. Chem. Commun. 2005; 4946
    • 5e Córdova A, Ibrahem I, Casas J, Sunden H, Engqvist M, Reyes E. Chem. Eur. J. 2005; 11: 4772

    • For recent reviews of organocatalysis involving primary amino acid and primary amines, see:
    • 5f Peng F, Shao Z. J. Mol. Catal. A: Chem. 2008; 285: 1
    • 5g Xu L.-W, Luo J, Lu Y. Chem. Commun. 2009; 1807
    • 5h Tsogoeva SB, Wei S. Tetrahedron: Asymmetry 2005; 16: 1947

      For pioneering work of using hydrogen bond donor to improve the stereoselectivity of catalytic aldol reactions by enamine activation, see:
    • 6a Peelen TJ, Chi Y, Gellman SH. J. Am. Chem. Soc. 2005; 127: 11598
    • 6b Zhou Y, Shan Z. J. Org. Chem. 2006; 71: 9510
    • 6c Chi Y, Gellman SH. Org. Lett. 2005; 7: 4253

    • For a review, see:
    • 6d Companyo X, Vicanio M, Rios R. Mini-Rev. Org. Chem. 2010; 7: 1

      For examples of primary amino acid-catalyzed syn-selective direct aldol reaction, see:
    • 7a Wu X, Jiang Z, Shen HM, Lu Y. Adv. Synth. Catal. 2007; 349: 812
    • 7b Ramasastry SS. V, Zhang H, Tanaka F, Barbas III CF. J. Am. Chem. Soc. 2007; 129: 288
    • 7c Ramasastry SS. V, Albertshofer K, Utsumi N, Tanaka F, Barbas III CF. Angew. Chem. Int. Ed. 2007; 46: 5572
    • 7d Ramasastry SS. V, Albertshofer K, Utsumi N, Barbas III CF. Org. Lett. 2008; 10: 1621
    • 7e Jiang Z, Yang H, Han X, Luo J, Wong MW, Lu Y. Org. Biomol. Chem. 2010; 8: 1368
    • 7f Wu C, Fu X, Li S. Eur. J. Org. Chem. 2011; 1291

    • For examples of syn-dihydroxyacetone-based organocatalytic aldol reactions, see:
    • 7g Ref. 7c.
    • 7h Utsumi N, Imai M, Tanaka F, Ramasastry SS. V, Barbas III CF. Org. Lett. 2007; 9: 3445
    • 7i Markert M, Mulzer M, Schetter B, Mahrwald R. J. Am. Chem. Soc. 2007; 129: 7258
    • 7j Markert M, Mahrwald R. Eur. J. Chem. 2008; 14: 40
    • 7k Luo S, Xu H, Zhang L, Li J, Cheng JP. Org. Lett. 2008; 10: 653
    • 9a Reis O, Eymur S, Reis B, Demir AS. Chem. Commun. 2009; 1088
    • 9b Companyo X, Valero G, Crovetto L, Moyano A, Rios R. Chem. Eur. J. 2009; 15: 6564
    • 9c Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 9d Schreiner PR. Org. Lett. 2002; 4: 217
  • 10 Lin S, Deiana L, Zhao G.-L, Sun J, Córdova A. Angew. Chem. Int. Ed. 2011; 50: 7624
  • 11 Ma G, Bartoszwicz A, Ibrahem I, Córdova A. Adv. Synth. Catal. 2011; 353: 3114
    • 12a Naryan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 12b Jung Y, Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492

      For reviews discussing factors required to make a reaction in water environmentally benign, see:
    • 13a Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
    • 13b Blackmond DG, Armstrong A, Coombe V, Wells A. Angew. Chem. Int. Ed. 2007; 46: 3798
    • 14a Hayashi Y. Angew. Chem. Int. Ed. 2006; 45: 8103
    • 14b Paradowska J, Stodulski M, Mlynarski J. Angew. Chem. Int. Ed. 2009; 48: 4288
    • 15a Kolter T, Sandhoff K. Angew. Chem. Int. Ed. 1999; 38: 1532
    • 15b Brodesser S, Sawatzki P, Kolter T. Eur. J. Org. Chem. 2003; 2021
    • 15c Kolter T. Conformational Restriction of Sphingolipids. In Highlights Bioorganic Chemistry: Methods and Applications. Schmuck C, Wennemers H. Wiley-VCH; Weinheim: 2004: 48
    • 15d Liao J, Tao J, Lin G, Liu D. Tetrahedron 2005; 61: 4715
    • 16a Zellner J. Monatsh. Chem. 1911; 32: 133
    • 16b Oda T. J. Pharm. Soc. Jpn. 1952; 72: 142
    • 16c Carter HE, Hendrickson HS. Biochemistry 1963; 2: 389
    • 17a Carter HE, Clemer WD, Lands WM, Mullerand KL, Tomizawa HH. J. Biol. Chem. 1954; 206: 613
    • 17b Kawano Y, Higushi R, Isobe R, Komori T. Liebigs Ann. Chem. 1988; 19
    • 17c Li Y.-T, Hirabayashi Y, DeGasperi R, Yu RK, Ariga T, Koerner TA. W, Li S.-C. J. Biol. Chem. 1984; 259: 8980
    • 17d Barenholz Y, Gatt S. Biochem. Biophys. Res. Commun. 1967; 27: 319
    • 17e Amatsu KT, Mikami M, Kiguschi K, Nozawa S, Iwamori M. Biochem. Biophys. Acta 1992; 1165: 177
    • 17f Okabe K, Keenan RW, Schmidt G. Biochem. Biophys. Res. Commun. 1968; 31: 137
    • 17g Wertz PW, Miethke MC, Long SA, Staussand JS, Downing DT. J. Invest. Dermatol. 1985; 84: 410
    • 17h Vance DE, Sweeley CC. Lipid Res. 1967; 8: 621
    • 17i Dickson RC, Lester RL. Biochim. Biophys. Acta 2003; 1583: 13
    • 17j Kobayashi E, Motoski K, Yamaguchi Y, Uchida T, Fukushima H, Koezuka Y. Oncol. Res. 1995; 7: 529

      For recent synthesis of d-lyxo-phytosphingosine, see:
    • 18a Mu Y, Kim JY, Jin X, Park SH, Joo JE, Ham WH. Synthesis 2012; 44: 2340
    • 18b Lee YM, Baek DJ, Lee S, Lim D, Kim S. J. Org. Chem. 2011; 76: 408
    • 18c Rao GS, Rao BV. Tetrahedron Lett. 2011; 52: 6076
    • 18d Kim S, Lee N, Lee S, Lee T, Lee YM. J. Org. Chem. 2008; 73: 1379
    • 18e Abraham E, Brock EA, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Perkins JH, Roberts PM, Russell AJ, Sánchez-Fernández EM, Scot PM, Smith AD, Thomson JE. Org. Biomol. Chem. 2008; 6: 1665
    • 18f Righi G, Ciambrone S, Achille CD, Leonelli A, Bonini C. Tetrahedron 2006; 62: 11821

    • For other methods towards the syntheses of lyxo-phytospingosine and analogues, see:
    • 18g Dubey A, Kumar P. Tetrahedron Lett. 2009; 50: 3425
    • 18h Kumar I, Rode CV. Tetrahedron: Asymmetry 2007; 18: 1975
    • 18i Park J, Lee JH, Li Q, Diaz K, Chang YT, Chung SK. Bioorg. Chem. 2008; 36: 220
    • 18j Lu X, Byun HS, Bittman R. J. Org. Chem. 2004; 69: 5433
    • 18k Tsujimoto T, Itoa Y. Tetrahedron Lett. 2007; 48: 5513

      For recent reviews on the synthesis of phytosphingosines and analogues, see:
    • 19a Howell AR, Ndakala AJ. Curr. Org. Chem. 2002; 6: 365 ; and references cited therein
    • 19b Liao J, Tao J, Lin D. Tetrahedron 2005; 61: 4715
    • 19c Morales-Serna JA, Llaveria J, Diaz Y, Matheu MI, Castillón S. Curr. Org. Chem. 2010; 14: 2483 ; and references cited therein

      Selected publications for the synthesis of phytosphingosines, see:
    • 20a Eleuterio AS, Quintero L, Piscil FS. J. Org. Chem. 2011; 76: 5466
    • 20b Perali RS, Mandava S, Chalapala S. Tetrahedron 2011; 67: 9277
    • 20c Rao GS, Rao BV. Tetrahedron Lett. 2011; 52: 4859
    • 20d Martinkova M, Gonda J, Pomikalova K, Kozisek J, Kuchar J. Carbohydr. Res. 2011; 346: 1728
    • 20e Ballereau S, Abadie NA, Saffon N, Génisson Y. Tetrahedron 2011; 67: 2570
    • 20f Kumar P, Dubey A, Puranik VG. Org. Biomol. Chem. 2010; 8: 5074
    • 20g Liu Z, Byun HS, Bittman R. J. Org. Chem. 2010; 75: 4356
    • 20h Raghavan S, Krishnaiah V. J. Org. Chem. 2010; 75: 748
    • 20i Reddipalli GS, Venkataiah M, Mishra MK, Fadnavis NW. Tetrahedron: Asymmetry 2009; 20: 1802
    • 20j Reddy LV. R, Reddy PV, Shaw AK. Tetrahedron: Asymmetry 2007; 18: 542
    • 20k Ichikawa Y, Matsunaga K, Masuda T, Kotsuki H, Nakano K. Tetrahedron 2008; 64: 11313
    • 20l Liu J, Du Y, Dong X, Meng S, Xiao J, Cheng L. Carbohydr. Res. 2006; 341: 2653
    • 20m So RC, Ndonye R, Izmirian DP, Richardson SK, Guerrera RL, Howell AR. J. Org. Chem. 2004; 69: 3233
    • 20n Bhaket P, Morris K, Stauffer CS, Datta A. Org. Lett. 2005; 7: 875
    • 20o Raghavan S, Rajender A. J. Org. Chem. 2003; 68: 7094
    • 20p Ndakala AJ, Hashemzadeh M, So RC, Howell AR. Org. Lett. 2002; 4: 1719
    • 20q Shirota O, Nakanishi K, Berova B. Tetrahedron 1999; 55: 13643
  • 21 For a review on the use of protected acetone in aldol reactions, see: Enders D, Voith M, Lenzen A. Angew. Chem. Int. Ed. 2005; 44: 1304

    • For early examples in proline-catalyzed C–C bond-forming reactions, see:
    • 22a Enders D, Grondahl C. Angew. Chem. Int. Ed. 2005; 44: 1210
    • 22b Ibrahem I, Cordova A. Tetrahedron Lett. 2005; 46: 1210
    • 22c Westermann B, Neuhaus C. Angew. Chem. Int. Ed. 2005; 44: 4077
  • 23 Enders D, Palecek J, Grondal C. Chem. Commun. 2006; 655
  • 24 Jiang H, Elsner P, Jensen KL, Falcicchio A, Marcos V, Jørgensen KL. Angew. Chem. Int. Ed. 2009; 48: 6844
  • 25 Our initial results were communicated at a conference proceeding: Mridha M, Ma G, Palo-Nieto C, Córdova A. In Applied numerical mathematics and scientific computation . Athens; Greece: November 28–30, 2014: 174
  • 26 Bassan A, Zou WE, Reyes Himo F, Córdova A. Angew. Chem. Int. Ed. 2005; 44: 7028
  • 27 Patora-Komisarska K, Benohoud M, Ishikawa H, Seebach D, Hayashi Y. Helv. Chim. Acta 2011; 94: 7197