Synlett 2017; 28(03): 333-336
DOI: 10.1055/s-0036-1588083
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Thioacetalization of Aldehydes

Ji Hye Kim
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@kofo.mpg.de
,
Aurélien Tap
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@kofo.mpg.de
,
Luping Liu
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@kofo.mpg.de
,
Benjamin List*
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@kofo.mpg.de
› Author Affiliations
Further Information

Publication History

Received: 05 September 2016

Accepted after revision: 04 October 2016

Publication Date:
25 October 2016 (online)


Abstract

A catalytic enantioselective thioacetalization reaction has been developed. Various aldehydes react with unsymmetrical 1,3- or 1,2-dithiols to furnish chiral, enantioenriched thioacetals in excellent enantioselectivities upon treatment with a nitrated imidodiphosphoric acid catalyst. The transformation is assumed to proceed via a thionium ion intermediate.

Supporting Information

 
  • References and Notes

    • 3a Kocieński PJ. Protecting Groups . Thieme; Stuttgart: 2005
    • 3b Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . John Wiley and Sons; New York: 1999
    • 3c Page PC. B, van Niel MB, Prodger JC. Tetrahedron 1989; 45: 7643
    • 3d Luh T.-Y. J. Organomet. Chem. 2002; 653: 209
    • 3e Seebach D, Corey EJ. J. Org. Chem. 1975; 40: 231
    • 3f Eliel EL, Hartmann AA, Abatjoglou AG. J. Am. Chem. Soc. 1974; 96: 1807
    • 4a Rutenber E, Fauman EB, Keenan RJ, Fong S, Furth PS, de Montellano PR. O, Meng E, Kuntz ID, DeCamp DL, Salto R, Rosé JR, Craik CS, Stroud RM. J. Biolog. Chem. 1993; 268: 15343
    • 4b Smith EM, Swiss GF, Neustadt BR, McNamara P, Gold EH, Sybertz EJ, Baum T. J. Med. Chem. 1989; 32: 1600
  • 5 This work has first been described in the PhD thesis of JHK (‘Brønsted acid catalyzed asymmetric acetalizations’, University of Cologne, published online in November 2015, http://kups.ub.uni-koeln.de/6422/). After the completion of our studies and during the preparation of this manuscript, Zhou et al. reported a chiral phosphoric acid catalyzed thioacetalization of salicylaldehydes: Yu J.-S, Wu W.-M, Zhou F. Org. Biomol. Chem. 2016; 14: 2205
    • 6a Dentel H, Chataigner I, Le Cavelier F, Gulea M. Tetrahedron Lett. 2010; 51: 6014
    • 6b Jiang H, Cruz DC, Li Y, Lauridsen VH, Jørgensen KA. J. Am. Chem. Soc. 2013; 135: 5200
    • 6c Liao K, Zhou F, Yu J.-S, Gao W.-M, Zhou J. Chem. Commun. 2015; 51: 16255
    • 7a Čorić I, Vellalath S, List B. J. Am. Chem. Soc. 2010; 132: 8536
    • 7b Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
    • 7c Čorić I, List B. Nature 2012; 483: 315
    • 7d Kim JH, Čorić I, Vellalath S, List B. Angew. Chem. Int. Ed. 2013; 52: 4474
    • 7e Kim JH, Čorić I, Palumbo C, List B. J. Am. Chem. Soc. 2015; 137: 1778
    • 7f Čorić I, Vellalath S, Müller S, Cheng X, List B. Top. Organomet. Chem. 2013; 44: 165
    • 7g Sun ZK, Winschel GA, Borovika A, Nagorny P. J. Am. Chem. Soc. 2012; 134: 8074
    • 7h Mensah E, Camasso N, Kaplan W, Nagorny P. Angew. Chem. Int. Ed. 2013; 52: 12932
    • 7i Khomutnyk YY, Argüelles AJ, Winschel GA, Sun Z, Zimmerman PM, Nagorny P. J. Am. Chem. Soc. 2016; 138: 444
    • 7j Chen Z, Sun J. Angew. Chem. Int. Ed. 2013; 52: 13593
    • 8a Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC. J. Am. Chem. Soc. 2005; 127: 15696
    • 8b Liang Y, Rowland EB, Rowland GB, Perman JA, Antilla JC. Chem. Commun. 2007; 4477
    • 8c Li G, Fronczek FR, Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
    • 8d Ingle GK, Mormino MG, Wojtas L, Antilla JC. Org. Lett. 2011; 13: 4822
    • 8e Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15786
    • 8f Vellalath S, Čorić I, List B. Angew. Chem. Int. Ed. 2010; 49: 9749
    • 8g Rueping M, Antonchick AP, Sugiono E, Grenader K. Angew. Chem. Int. Ed. 2009; 48: 908
    • 9a Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 9b Terada M, Tanaka H, Sorimachi K. J. Am. Chem. Soc. 2009; 131: 3430
    • 9c Zhang Q.-W, Fan C.-A, Zhang H.-J, Tu Y.-Q, Zhao Y.-M, Gu P, Chen Z.-M. Angew. Chem. Int. Ed. 2009; 48: 8572
    • 9d Brak EN, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
    • 9e Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703
    • 9f Das S, Liu L, Zheng Y, Alachraf MW, Thiel W, De CK, List B. J. Am. Chem. Soc. 2016; 138: 9429
    • 9g Liu L, Kaib P, Tap A, List B. J. Am. Chem. Soc. 2016; 138: 10822
    • 9h Zhao C, Chen BS, Seidel D. J. Am. Chem. Soc. 2016; 138: 9053
    • 9i Gheewala CD, Collins BE, Lambert TH. Science 2016; 351: 961
    • 10a Liao S, Čorić I, Wang Q, List B. J. Am. Chem. Soc. 2012; 134: 10765
    • 10b Liu L, Leutzsch M, Zheng Y, Alachraf MW, Thiel W, List B. J. Am. Chem. Soc. 2015; 137: 13268
  • 11 Representative Procedure for the Synthesis of a Dithiolanes Freshly distilled hydrocinnamaldehyde (2a, 26.0 μL, 0.2 mmol, 1 equiv) was added to a mixture of 2-methylpropane-1,2-dithiol (1a, 29 μL, 0.24 mmol, 1.2 equiv), catalyst 6 (5.8 mg, 4 μmol, 2 mol%), and 5 Å MS (40 mg) in α,α,α-trifluorotoluene (2 mL). The mixture was stirred vigorously at r.t. for 24 h and then treated with an aqueous saturated solution of NaHCO3. The aqueous layer was extracted three times with EtOAc, and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated. Purification was performed by column chromatography on silica gel using 2% EtOAc in hexane as the eluents to obtain product 3a as a colorless oil (43 mg, 90% yield); er = 98:2. 1H NMR (500 MHz, CDCl3): δ = 7.31–7.26 (m, 2 H), 7.22–7.17 (m, 3 H), 4.52 (t, J = 7.0 Hz, 1 H), 3.09 (d, J = 11.5 Hz, 1 H), 2.96 (d, J = 11.5 Hz, 1 H), 2.75 (m, 2 H), 2.19–2.15 (m, 2 H), 1.59 (s, 3 H), 1.55 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 141.0, 128.6, 128.5, 126.1, 77.4, 77.2, 76.9, 60.3, 53.2, 50.9, 40.7, 35.4, 29.7, 29.4. HRMS (APPI pos.): m/z calcd for C13H19O2 [M + H]+: 239.0928; found: 239.0924. [α]D 25 –20.2 (c 1.00, CHCl3). HPLC (Chiralpak OJ-H, n-heptane–i-PrOH = 99:1, flow rate: 0.5 mL/min, λ = 254 nm): t R (minor) = 14.76 min, t R (major) = 16.89 min.
  • 12 Representative Procedure for the Synthesis of Dithianes Freshly distilled hydrocinnamaldehyde (26.0 μL, 0.2 mmol, 1 equiv) was added to a mixture of 2-methylpropane-1,3-dithiol (1b, 29 μL, 0.4 mmol, 1.2 equiv), catalyst 6 (14.6 mg, 10 μmol, 5 mol%), and 5 Å MS (40 mg) in α,α,α-trifluorotoluene (2 mL). The mixture was stirred vigorously at 0 °C for 24 h and then quenched with an aqueous saturated solution of NaHCO3. The aqueous layer was extracted three times with EtOAc, and the combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. Purification was performed by column chromatography on silica gel using 30% CH2Cl2 in hexane as the eluents to get product 3f as a colorless oil (37 mg, 73% yield); er = 90:10. 1H NMR (500 MHz, CDCl3): δ = 7.30–7.27 (m, 2 H), 7.21–7.18 (m, 3 H), 4.16 (t, J = 7.2 Hz, 1 H), 3.09 (ddd, J = 15.4, 12.6, 3.1 Hz, 1 H), 2.86 (m, 2 H), 2.74 (ddd, J = 15.4, 4.5, 3.1 Hz, 1 H), 2.05 (m, 2 H), 1.88–1.77 (m, 2 H), 1.34 (s, 3 H), 1.28 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 140.9, 128.5, 128.4, 126.0, 43.1, 41.5, 39.5, 36.5, 32.5, 32.0, 26.7, 26.5. HRMS (EI, FE): m/z calcd for C14H20S2 [M]: 252.1006; found: 252.1006. [α]D 25 –54.9 (c 0.85, CHCl3). HPLC (Chiralpak Cellucoat RP, MeCN–H2O = 60:40, flow rate: 1 mL/min, λ = 207 nm): t R (minor) = 9.90 min, t R (major) = 10.84 min.