Synthesis 2017; 49(01): 69-75
DOI: 10.1055/s-0036-1588068
paper
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Synthesis of the C1–C15 Segment of Spirastrellolide A

Yui Sahara
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Jin Cui
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Makoto Furutachi
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Jingbo Chen
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Takumi Watanabe*
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
,
Masakatsu Shibasaki*
Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki Shinagawa-ku, Tokyo 141-0021, Japan   Email: twatanabe@bikaken.or.jp   Email: mshibasa@bikaken.or.jp
› Author Affiliations
Further Information

Publication History

Publication Date:
23 September 2016 (eFirst)

Dedicated to Prof. Dieter Enders on the occasion of his 70th birthday

Abstract

Catalytic asymmetric synthesis of the C1–C15 fragment of spirastrellolide A, a naturally occurring PP2A inhibitor, was achieved. To construct the 1,3-polyol system in a stereodefined manner, we took advantage of an iterative aldol strategy comprising the catalytic asymmetric thioamide-aldol reaction, and a diastereoselective crotylation process. A potential segment for the total synthesis of spirastrellolide A was thus accessed through a 14-step procedure.

Supporting Information

 
  • References

  • 1 Williams DE, Roberge M, Van Soest R, Andersen RJ. J. Am. Chem. Soc. 2003; 125: 5296
  • 2 Williams DE, Lapawa M, Feng X, Tarling T, Roberge M, Andersen RJ. Org. Lett. 2004; 6: 2607
  • 3 Warabi K, Williams DE, Patrick BO, Roberge M, Andersen RJ. J. Am. Chem. Soc. 2007; 129: 508
  • 4 Williams DE, Keyzers RA, Warabi K, Desjardine K, Riffell JL, Roberge M, Andersen RJ. J. Org. Chem. 2007; 72: 9842
  • 5 Suzuki M, Ueoka R, Takada K, Okada S, Ohtsuka S, Ise Y, Matsunaga S. J. Nat. Prod. 2012; 75: 1192
    • 6a Paterson I, Anderson EA, Dalby SM, Lim JH, Genovino J, Maltas P, Moessner C. Angew. Chem. Int. Ed. 2008; 47: 3016
    • 6b Paterson I, Anderson EA, Dalby SM, Lim JH, Genovino J, Maltas P, Moessner C. Angew. Chem. Int. Ed. 2008; 47: 3021
    • 6c O’Neil GW, Ceccon J, Benson S, Collin M.-P, Fasching B, Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 9940
    • 6d Benson S, Collin M.-P, O’Neil GW, Ceccon J, Fasching B, Fenster MD. B, Godbout C, Radkowski K, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2009; 48: 9946
    • 6e Benson S, Collin M.-P, Arlt A, Gabor B, Goddard R, Fürstner A. Angew. Chem. Int. Ed. 2011; 50: 8739
    • 6f Paterson I, Maltas P, Dalby SM, Lim JH, Anderson EA. Angew. Chem. Int. Ed. 2012; 51: 2749
    • 7a Butler Jr. BB, Manda JN, Aponick A. Org. Lett. 2015; 17: 1902
    • 7b Chandrasekhar S, Rambabu C, Reddy AS. Org. Lett. 2008; 10: 4355
    • 7c Chen JL.-Y, Brimble MA. Chem. Commun. 2010; 46: 3967
    • 7d Chen JL.-Y, Brimble MA. J. Org. Chem. 2011; 76: 9417
    • 7e Keaton KA, Phillips AJ. Org. Lett. 2008; 10: 1083
    • 7f Lam T, Totah NJ. Tetrahedron Lett. 2015; 56: 3349
    • 7g Liu J, Hsung RP. Org. Lett. 2005; 7: 2273
    • 7h Liu J, Yang JH, Ko C, Hsung RP. Tetrahedron Lett. 2006; 47: 6121
    • 7i Yang J.-H, Liu J, Hsung RP. Org. Lett. 2008; 10: 2525
    • 7j Tang Y, Yang J.-H, Liu J, Wang C.-C, Lv M.-C, Wu Y.-B, Yu X.-L, Ko C, Hsung RP. Heterocycles 2012; 86: 565
    • 7k Wang C.-C, Tang Y, Yang K, Li X.-Y, Wu Y.-B, Hsung RP. Tetrahedron 2013; 69: 8284
    • 7l Wu Y.-B, Tang Y, Luo G.-Y, Chen Y, Hsung RP. Org. Lett. 2014; 16: 4550
    • 7m Maitra S, Bodugam M, Javed S, Hanson PR. Org. Lett. 2016; 18: 3094
    • 7n Pan Y, De Brabander JK. Synlett 2006; 853
    • 7o Rajesh A, Sharma GV. M, Damera K. Tetrahedron Lett. 2014; 55: 4067
    • 7p Sabitha G, Rao AS, Yadav JS. Synthesis 2010; 505
    • 7q Sabitha G, Rao AS, Yadav JS. Org. Biomol. Chem. 2013; 11: 7218
    • 7r Smith III AB, Kim D.-S. Org. Lett. 2007; 9: 3311
    • 7s Smith III AB, Smits H, Kim D.-S. Tetrahedron 2010; 66: 6597
    • 7t Wang X, Paxton TJ, Li N, Smith III AB. Org. Lett. 2012; 14: 3998
    • 7u Sokolsky A, Cattoen M, Smith III AB. Org. Lett. 2015; 17: 1898
    • 7v Sokolsky A, Wang X, Smith III AB. Tetrahedron Lett. 2015; 56: 3160
    • 7w Wang C, Forsyth CJ. Org. Lett. 2006; 8: 2997
    • 7x Wang C, Forsyth CJ. Heterocycles 2007; 72: 621
  • 8 Janssens V, Goris J. Biochem. J. 2001; 353: 417
  • 9 Eichhorn PJ. A, Creyghton MP, Bernards R. Biochim. Biophys. Acta 2009; 1795: 1
    • 10a Iwata M, Yazaki R, Suzuki Y, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 18244
    • 10b Alagiri K, Lin S, Kumagai N, Shibasaki M. Org. Lett. 2014; 16: 5301
    • 11a Iwata M, Yazaki R, Chen I.-H, Sureshkumar D, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2011; 133: 5554
    • 11b Kawato Y, Iwata M, Yazaki R, Kumagai N, Shibasaki M. Tetrahedron 2011; 67: 6539
  • 12 Roush WR, Ando K, Powers DB, Palkowitz AD, Halterman RL. J. Am. Chem. Soc. 1990; 112: 6339