Synlett 2017; 28(11): 1291-1294
DOI: 10.1055/s-0036-1558958
cluster
© Georg Thieme Verlag Stuttgart · New York

In Situ Electrophilic Activation of Hydrogen Peroxide for Catalytic Asymmetric α-Hydroxylation of 3-Substituted Oxindoles

Kohsuke Ohmatsu
a  Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan   Email: tooi@apchem.nagoya-u.ac.jp
,
Yuichiro Ando
a  Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan   Email: tooi@apchem.nagoya-u.ac.jp
,
Takashi Ooi*
a  Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan   Email: tooi@apchem.nagoya-u.ac.jp
b  CREST, Japan Science and Technology Agency (JST), Nagoya 464-8601, Japan
› Author Affiliations
Further Information

Publication History

Received: 29 December 2016

Accepted after revision: 06 February 2017

Publication Date:
27 February 2017 (online)

Abstract

Peroxy trichloroacetimidic acid, in situ generated from aqueous hydrogen peroxide and trichloroacetonitrile, was found to act as a competent electrophilic oxygenating agent for the direct α-hydroxylation of oxindoles. The use of chiral 1,2,3-triazolium salt as a phase-transfer catalyst enabled rigorous absolute stereocontrol in the carbon–oxygen bond-forming reaction. The present study provides a new, yet practical method for straightforward access to optically active α-hydroxycarbonyl compounds.

Supporting Information

 
  • References and Notes

  • 1 Overman LE. Acc. Chem. Res. 1980; 13: 218-218
    • 2a Arnold JS, Zhang Q, Nguyen HM. Eur. J. Org. Chem. 2014; 4925-4925
    • 2b Sherif SM, Erian AW. Heterocycles 1996; 43: 1083-1083
    • 3a Schmidt RR, Michel J. Angew. Chem., Int. Ed. Engl. 1980; 19: 731-731
    • 3b Schmidt RR. Angew. Chem., Int. Ed. Engl. 1986; 25: 212-212
    • 4a Payne GB, Deming PH, Williams PH. J. Org. Chem. 1961; 26: 659-659
    • 4b Payne GB. Tetrahedron 1962; 18: 763-763
    • 4c Bach RD, Knight JW. Org. Synth. 1981; 60: 63-63
    • 4d Arias LA, Adkins S, Nagel CJ, Bach RD. J. Org. Chem. 1983; 48: 888-888

      For Payne-type oxidations of imines:
    • 5a Schirmann J.-P, Weiss F. Tetrahedron Lett. 1972; 13: 633-633
    • 5b Kraïem J, Kacem Y, Khiari J, Hassine BB. Synth. Commun. 2001; 31: 263-263
    • 5c Kraïem J, Othman RB, Hassine BB. C. R. Chimie 2004; 7: 1119-1119
    • 5d Tka N, Kraïem J, Hassine BB. Synth. Commun. 2012; 42: 2994-2994
    • 6a Uraguchi D, Tsutsumi R, Ooi T. J. Am. Chem. Soc. 2013; 135: 8161-8161
    • 6b Uraguchi D, Tsutsumi R, Ooi T. Tetrahedron 2014; 70: 1691-1691
    • 6c Tsutsumi R, Kim S, Uraguchi D, Ooi T. Synthesis 2014; 46: 871-871
  • 7 Ohmatsu K, Ando Y, Nakashima T, Ooi T. Chem 2016; 1: 802-802
    • 8a Matsuda H, Yoshida K, Miyagawa K, Asao Y, Takayama S, Nakashima S, Xu F, Yoshikawa M. Bioorg. Med. Chem. 2007; 15: 1539-1539
    • 8b Lucas-Lopez C, Patterson S, Blum T, Straight AF, Toth J, Slawin AM. Z, Mitchison TJ, Sellers JR, Westwood NJ. Eur. J. Org. Chem. 2005; 1736-1736
    • 8c Olack G, Morrison H. J. Org. Chem. 1991; 56: 4969-4969
    • 9a Acocella MR, Mancheño OG, Bella M, Jørgensen KA. J. Org. Chem. 2004; 69: 8165-8165
    • 9b Gong B, Meng Q, Su T, Lian M, Wang Q, Gao Z. Synlett 2009; 2659-2659
    • 9c Lian M, Li Z, Du J, Meng Q, Gao Z. Eur. J. Org. Chem. 2010; 6525-6525
    • 9d Yao H, Lian M, Li Z, Wang Y, Meng Q. J. Org. Chem. 2012; 77: 9601-9601
    • 9e Cai Y, Lian M, Li Z, Meng Q. Tetrahedron 2012; 68: 7973-7973
    • 9f De Fusco C, Meninno S, Tedesco C, Lattanzi A. Org. Biomol. Chem. 2013; 11: 896-896
    • 9g Wang Y, Yin H, Qing H, Zhao J, Wu Y, Meng Q. Adv. Synth. Catal. 2016; 358: 737-737
    • 10a Smith AM. R, Billen D, Hii KK. Chem. Commun. 2009; 3925-3925
    • 10b Smith AM. R, Rzepa HS, White AJ. P, Billen D, Hii KK. J. Org. Chem. 2010; 75: 3085-3085
    • 11a Toullec PY, Bonaccorsi C, Mezzetti A, Togni A. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5810-5810
    • 11b Ishimaru T, Shibata N, Nagai J, Nakamura S, Toru T, Kanemasa S. J. Am. Chem. Soc. 2006; 128: 16488-16488
    • 11c Jiang J.-J, Huang J, Wang D, Zhao M.-X, Wang F.-J, Shi M. Tetrahedron: Asymmetry 2010; 21: 794-794
    • 11d Zou L, Wang B, Mu H, Zhang H, Song Y, Qu J. Org. Lett. 2013; 15: 3106-3106
    • 11e Gu X, Zhang Y, Xu Z.-J, Che C.-M. Chem. Commun. 2014; 50: 7870-7870
    • 11f Naganawa Y, Aoyama T, Nishiyama H. Org. Biomol. Chem. 2015; 13: 11499-11499
    • 11g Lin X, Ruan S, Yao Q, Yin C, Lin L, Feng X, Liu X. Org. Lett. 2016; 18: 3602-3602
  • 12 Lu M, Zhu D, Lu Y, Zeng X, Tan B, Xu Z, Zhong G. J. Am. Chem. Soc. 2009; 131: 4562-4562
    • 13a Masui M, Ando A, Shioiri T. Tetrahedron Lett. 1988; 29: 2835-2835
    • 13b de Vries EF. J, Ploeg L, Colao M, Brussee J, van der Gen A. Tetrahedron: Asymmetry 1995; 6: 1123-1123
    • 13c Sano D, Nagata K, Itoh T. Org. Lett. 2008; 10: 1593-1593
    • 13d Yang Y, Moinodeen F, Chin W, Ma T, Jiang Z, Tan C.-H. Org. Lett. 2012; 14: 4762-4762
    • 13e Lian M, Li Z, Cai Y, Meng Q, Gao Z. Chem. Asian J. 2012; 7: 2019-2019
    • 13f Sim S.-BD, Wang M, Zhao Y. ACS Catal. 2015; 5: 3609-3609
    • 13g Wang Y, Yin H, Tang X, Wu Y, Meng Q, Gao Z. J. Org. Chem. 2016; 81: 7042-7042
  • 14 Li Z, Lian M, Yang F, Meng Q, Gao Z. Eur. J. Org. Chem. 2014; 3491-3491
  • 15 Ohmatsu K, Kiyokawa M, Ooi T. J. Am. Chem. Soc. 2011; 133: 1307-1307
  • 16 In the present system, the N-Boc group on the oxindole nitrogen seemed crucial for achieving high efficiency and enantioselectivity. For instance, attempted reaction of N-4-methoxyphenyl 3-phenyloxindole under identical conditions described in Table 2 afforded the corresponding α-hydroxyoxindole in moderate yield with low enantioselectivity (45% yield, 28% ee).
  • 17 Representative Procedure for Catalytic Asymmetric α-Hydroxylation of Oxindoles A solution of 1c·Br (3.76 mg, 0.005 mmol), oxindole 2a (30.9 mg, 0.10 mmol), and K2CO3 (13.8 mg, 0.10 mmol) in Et2O (1.0 mL) was degassed by alternating vacuum evacuation/argon backfill. Then, the resulting mixture was cooled to –10 °C. To this solution were successively added a 30% aq solution of H2O2 (50 μL, 0.50 mmol) and trichloroacetonitirile (10 μL, 0.10 mmol), and the mixture was stirred for 24 h. The reaction was quenched with a sat. aq solution of NH4Cl, and the extractive workup was performed with EtOAc. The organic extracts were dried over Na2SO4, filtered, and concentrated. The crude residue was purified by column chromatography on silica gel (hexane–CHCl3 = 3:1 as eluent) to afford 3a (31.5 mg, 0.097 mmol, 97% yield, 94% ee). Compound 3a: [α]D 23 = +45.6 (c = 3.0, CHCl3) for 94% ee. 1H NMR (400 MHz, CDCl3): δ = 7.94 (1 H, d, J = 8.2 Hz), 7.40 (1 H, td, J = 8.0, 1.2 Hz), 7.36–7.29 (6 H, m), 7.20 (1 H, t, J = 7.8 Hz), 3.42 (1 H, s), 1.63 (9 H, s). 13C NMR (101 MHz, CDCl3): δ = 176.0, 149.2, 139.9, 139.8, 130.3, 128.8, 128.7, 125.7, 125.4, 125.2, 115.6, 85.0, 77.8, 28.2, one peak for aromatic carbon was not found probably due to overlapping. IR (film): 3456, 3001, 2978, 1788, 1609, 1479, 1342, 1285, 1146, 908, 719 cm-1. HRMS (ESI+): m/z calcd for C19H19NO4Na+ [M + Na]+: 348.1206; found: 348.1206. HPLC (ID3, hexane–i-PrOH = 10:1, flow rate = 0.5 mL/min, λ = 210 nm): t = 15.8 min (major isomer); 17.5 min (minor isomer).