Synlett 2017; 28(12): 1441-1444
DOI: 10.1055/s-0036-15588166
letter
© Georg Thieme Verlag Stuttgart · New York

A Copper-Catalyzed Synthesis of Functionalized Quinazolines from Isocyanides and Aniline Tri- and Dichloroacetonitrile Adducts through Intramolecular C–H Activation

Manijeh Nematpour
a   Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran   eMail: sa_tabatabai@sbmu.ac.ir
,
Elham Rezaee
a   Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran   eMail: sa_tabatabai@sbmu.ac.ir
,
Sayyed Abbas Tabatabai*
a   Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran   eMail: sa_tabatabai@sbmu.ac.ir
,
Mehdi Jahani
b   Department of Chemistry, Sharif University of Technology, Tehran, Iran
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 08. Januar 2017

Accepted after revision: 08. März 2017

Publikationsdatum:
11. April 2017 (online)


Abstract

A novel class of substituted quinazolines were prepared in good yields by a one-pot three-component reaction of isocyanides with adducts of anilines and tri- or dichloroacetonitrile, followed by intramolecular C–H activation, catalyzed by copper(I) iodide with l-proline as a ligand in acetonitrile at room temperature.

Supporting Information

 
  • References and Notes

    • 1a Malecki N. Carato P. Rigo G. Goossens J.-F. Houssin R. Bailly C. Hénichart J.-P. Bioorg. Med. Chem. 2004; 12: 641
    • 1b Gundla R. Kazemi R. Sanam R. Muttineni R. Sarma JA. R. P. Dayam R. Neamati N. J. Med. Chem. 2008; 51: 3367
  • 2 Fry DW. Kraker AJ. McMichael A. Ambroso LA. Nelson JM. Leopold WR. Connors RW. Bridges AJ. Science 1994; 265: 1093
    • 3a Herget T. Freitag M. Morbitzer M. Kupfer R. Stamminger T. Marschall M. Antimicrob. Agents Chemother. 2004; 48: 4154
    • 3b Chien T.-C. Chen C.-S. Yu F.-H. Chern J.-W. Chem. Pharm. Bull. 2004; 52: 1422
  • 4 Henderson EA. Bavetsias V. Theti DS. Wilson SC. Clauss R. Jackman AL. Bioorg. Med. Chem. 2006; 14: 5020
    • 5a Kunes J. Bazant J. Pour M. Waisser K. Slosárek M. Janota J. Farmaco 2000; 55: 725
    • 5b Waisser K. Gregor J. Dostál H. Kunes J. Kubicová L. Klimesová V. Kaustová J. Farmaco 2001; 56: 803
    • 6a Lewerenz A. Hentschel S. Vissiennon Z. Michael S. Nieber K. Drug Dev. Res. 2003; 58: 420
    • 6b Colotta V. Catarzi D. Varano F. Lenzi O. Filacchioni G. Costagli C. Galli A. Ghelardini C. Galeotti N. Gratteri P. Sgrignani J. Deflorian F. Moro S. J. Med. Chem. 2006; 49: 6015
  • 7 Mendes da Silva JF. Walters M. Al-Damluji S. Ganellin CR. Bioorg. Med. Chem. 2008; 16: 7254
    • 8a Lüth A. Löwe W. Eur. J. Med. Chem. 2008; 43: 1478
    • 8b Rewcastle GW. Palmer BD. Bridges AJ. Showalter HD. H. Sun L. Nelson J. McMichael A. Kraker AJ. Fry DW. Denny WA. J. Med. Chem. 1996; 39: 918
    • 9a Undheim K. Benneche T. In: Comprehensive Heterocyclic Chemistry II . Vol. 6. Katritzky AR. Rees CW. Scriven EV. F. Chap. 6.02 Pergamon; Oxford: 1998: 93
    • 9b Connolly DJ. Cusack D. O’Sullivan TP. Guiry PJ. Tetrahedron 2005; 61: 10153
    • 9c Michael JP. Nat. Prod. Rep. 2003; 20: 476
    • 9d Shreder KR. Wong MS. Nomanbhoy T. Leventhal PS. Fuller SR. Org. Lett. 2004; 6: 3715
    • 9e Costa M. Ca ND. Gabriele B. Massera C. Salerno G. Soliani M. J. Org. Chem. 2004; 69: 2469
    • 9f Wiedemann SH. Ellman JA. Bergman RG. J. Org. Chem. 2006; 71: 1969
    • 9g Fekner T. Müller-Bunz H. Guiry PJ. Org. Lett. 2006; 8: 5109
    • 9h Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 9i Ferrini S. Ponticelli F. Taddei M. Org. Lett. 2007; 9: 69
    • 9j Mizuno T. Okamoto N. Ito T. Miyata Y. Tetrahedron Lett. 2000; 41: 1051
    • 10a Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 10b Engle KM. Mei T.-S. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 10c Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 10d Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 10e Colby DA. Tsai AS. Bergman RG. Ellman JA. Acc. Chem. Res. 2012; 45: 814
    • 11a Zhu C. Yi M. Wei D. Chen X. Wu Y. Cui X. Org. Lett. 2014; 16: 1840
    • 11b Lu J. Jin Y. Liu H. Jiang Y. Fu H. Org. Lett. 2011; 13: 3694
    • 11c Huang H. Ji X. Tang X. Zhang M. Li X. Jiang H. Org. Lett. 2013; 15: 6254
    • 11d Oda Y. Hirano K. Satoh T. Miura M. Org. Lett. 2012; 14: 664
    • 11e Selvaraju M. Sun C.-M. Adv. Synth. Catal. 2014; 356: 1329
    • 11f Sang P. Xie Y. Zou J. Zhang Y. Org. Lett. 2012; 14: 3894
    • 11g Wang Q. Schreiber SL. Org. Lett. 2009; 11: 5178
    • 11h Xu H. Fu H. Chem. Eur. J. 2012; 18: 1180
    • 11i Mitsuda S. Fujiwara T. Kimigafukuro K. Monguchi D. Mori A. Tetrahedron 2012; 68: 3585
    • 11j Monguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett. 2009; 11: 1607
    • 12a Yavari I. Nematpour M. Damghani T. Tetrahedron Lett. 2014; 55: 1323
    • 12b Yavari I. Nematpour M. Helv. Chim. Acta 2014; 97: 1132
    • 12c Yavari I. Nematpour M. Mol. Divers. 2015; 19: 703
  • 13 Yavari I. Nematpour M. Sodagar E. Synlett 2013; 24: 161
  • 14 N-Phenyl-2-(trichloromethyl)quinazolin-4-amine (5a); Typical Procedure A mixture of PhNH2 (2a; 1 mmol) and Cl3CCN (1a; 1 mmol) was stirred for 5 min, and then a mixture of PhNC (4a; 1.5 mmol), CuI (0.10 mmol), Cs2CO3 (2.0 mmol), and l-proline (20 mol%) in MeCN (2 mL) was slowly added. The mixture was stirred at r.t. for 5 h until the reaction was complete [TLC, EtOAc–hexane (1:4)]. The mixture was then diluted with CH2Cl2 (2 mL) and aq NH4Cl (3 mL). The resulting mixture was stirred for 30 min, and then the phases were separated. The aqueous phase was extracted with CH2Cl2, and the combined organic fractions were dried (Na2SO4), filtered, and concentrated under reduced pressure. The resulting solid was collected by filtration and washed with hexane to give a cream-colored powder; yield: 0.29 g (85%); mp 188–190 °C. IR (KBr): 3344, 1604, 1585, 1164, 759 cm−1. 1H NMR (500 MHz, CDCl3): δ = 5.05 (s, 1 H, NH), 7.29–7.35 (m, 3 H, Ph), 7.48 (d, 3 J = 7.7, 2 H, Ar), 7.55 (t, 3 J = 8.1, 1 H, Ar), 7.62 (t, 3 J = 8.1, 1 H, Ar), 8.02 (d, 3 J = 8.1, 1 H, Ar), 8.26 (d, 3 J = 8.1, 1 H, Ar). 13C NMR (125.7 MHz, CDCl3): δ = 90.6 (CCl3), 127.2 (CH), 127.9 (2 CH), 128.1 (CH), 128.6 (2 CH), 129.4 (CH), 130.1 (CH), 131.4 (CH), 133.8 (C), 142.7 (C), 148.0 (C), 156.2 (C), 160.1 (C). MS: m/z (%) = 338 (11) [M + 1], 259 (12), 244 (18), 128 (24), 116 (100), 92 (56), 77 (60). Anal. Calcd for C15H10Cl3N3 (338.62): C, 53.20; H, 2.98; N, 12.41. Found: C, 53.18; H, 2.95; N, 12.49.
  • 15 Yang D. An B. Wei W. Tian L. Huang B. Wang H. ACS Comb. Sci. 2015; 17: 113