Synlett 2016; 27(17): 2477-2480
DOI: 10.1055/s-0035-1562691
letter
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Michael Addition of a Malonic Ester to a Maleic Ester Catalyzed by Lithium Binaphtholate

Midori Sakamoto
Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   eMail: nakajima@gpo.kumamoto-u.ac.jp
,
Tetsuya Kaneko
Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   eMail: nakajima@gpo.kumamoto-u.ac.jp
,
Yuya Orito
Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   eMail: nakajima@gpo.kumamoto-u.ac.jp
,
Makoto Nakajima*
Graduate School of Pharmaceutical Science, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan   eMail: nakajima@gpo.kumamoto-u.ac.jp
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 23. Mai 2016

Accepted after revision: 23. Juni 2016

Publikationsdatum:
15. Juli 2016 (online)


Abstract

Lithium 3,3′-chlorobinaphtholate was found to catalyze the enantioselective Michael addition of a malonic ester to a maleic ester. High enantioselectivities (>90% ee) were observed, especially in the reactions of 2-alkylmalonic esters and maleic esters.

Supporting Information

 
  • References and Notes


    • Review for the enantioselective Michael addition:
    • 1a Christoffers J, Koripelly G, Rosiak A, Rössle M. Synthesis 2007; 1279
    • 1b Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701
    • 1c Almasi D, Alonso DA, Nájera C. Tetrahedron: Asymmetry 2007; 18: 299
    • 1d Matsunaga S In Comprehensive Chirality . Vol. 4. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 243
    • 1e Takemoto Y, Stadler M In Comprehensive Chirality . Vol. 6. Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012: 243
  • 2 Clarke HT, Murray TF. Org. Synth., Coll. Vol. I 1941; 272
  • 3 Kotani S, Moritani M, Nakajima M. Asian J. Org. Chem. 2015; 4: 616

    • Lithium binaphtholate catalyzed reactions developed in our group:
    • 4a Tanaka K, Kukita K, Ichibakase T, Kotani S, Nakajima M. Chem. Commun. 2011; 47: 5614
    • 4b Ichibakase T, Nakatsu M, Nakajima M. Molecules 2011; 16: 5008
    • 4c Ichibakase T, Nakajima M. Org. Lett. 2011; 13: 1579
    • 4d Ichibakase T, Nakajima M. Synthesis 2012; 44: 3145
    • 4e Ichibakase T, Kaneko T, Orito Y, Kotani S, Nakajima M. Tetrahedron 2012; 68: 4210
    • 4f Kotani S, Kukita K, Tanaka K, Ichibakase T, Nakajima M. J. Org. Chem. 2014; 79: 4817
    • 4g Osakama K, Nakajima M. Org. Lett. 2016; 18: 236

      Selected examples of lithium binaphtholate-catalyzed asymmetric reactions:
    • 5a Schiffers R, Kagan HB. Synlett 1997; 1175
    • 5b Loog O, Maeorg I. Tetrahedron: Asymmetry 1999; 10: 2411
    • 5c Holmes IP, Kagan HB. Tetrahedron Lett. 2000; 41: 7453
    • 5d Hatano M, Ishihara K. Synthesis 2010; 3785
    • 5e Hatano M, Horibe T, Ishihara K. J. Am. Chem. Soc. 2010; 132: 56
    • 5f Hatano M, Ikeno T, Miyamoto T, Ishihara K. J. Am. Chem. Soc. 2010; 132: 56

      Selected reports for the catalytic asymmetric Michael additions using alkli metal salts of binaphthol derivatives:
    • 6a Tamai Y, Kamifuku A, Koshiishi E, Miyano S. Chem. Lett. 1995; 957
    • 6b Kim YS, Matsunaga S, Das J, Sekine A, Ohshima T, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 6506
    • 6c Belokon YN, Gugkaeva ZT, Maleev VI, Moskalenko MA, Tsaloev AT, Khrustalev VN, Hakobyan KV. Tetrahedron: Asymmetry 2011; 22: 167
    • 6d Otani T, Sugawara A, Tamai Y. Tetrahedron Lett. 2014; 55: 4923
  • 7 Lithium salt prepared from the corresponding naphthol and lithium hydroxide gave lesser result (68% yield, 75% ee under the conditions given in Table 1, entry 7).
  • 8 Typical Experimental Procedure for the Enantioselective Michael Addition Catalyzed by Lithium Binaphtholate Under argon atmosphere, n-BuLi (0.10 mmol, 20 mol%) in hexane (0.15 M, 0.67 mL) was added to the solution of (R)-Cl2BINOL (4a, 17.8 mg, 0.050 mmol, 10 mol%) in TBME at r.t. After stirring for 1 min, dibenzyl malonate (1a, 0.13 mL, 0.5 mmol) and diethyl maleate (2a, 0.10 mL, 0.6 mmol, 1.2 equiv) were successively added to the reaction mixture. After stirring for 1 h, the reaction was quenched with sat. NH4Cl aq (2 mL). The aqueous layer was extracted with EtOAc (20 mL), and the combined organic layers were washed with brine (20 mL). After drying over Na2SO4, filtration, and concentration, the crude product was purified by silica gel column chromatography (hexane–EtOAc = 9:1, SiO2 10 g) to give the adduct 3aa as a colorless oil (214 mg, 94% yield, 90% ee). [α]435 27 +11.5 (c 1.03, CHCl3) for 90% ee. IR (film): 3066, 3033, 1731, 1159 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.15 (t, J = 7.2 Hz, 3 H, CH 2CH3), 1.23 (t, J = 7.6 Hz, 3 H, CH 2CH3), 2.66 (dd, J = 17.0, 5.2 Hz, 1 H, CH2CO), 2.79 (dd, J = 17.0, 7.6 Hz, 1 H, CH2CO), 3.60–3.62 (m, 1 H), 4.04–4.12 (m, 5 H), 5.14 (s, 2 H, CH2Ph), 5.15 (s, 2 H, CH2Ph), 7.28–7.37 (m, 10 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 13.8, 14.1, 33.4, 40.4, 52.3, 60.8, 61.4, 67.4, 128.2, 128.3, 128.4 128.5, 134.9, 135.0, 167.3, 167.5, 171.1, 171.5 (3 C overlapped). MS–FAB: m/z = 457 (M + H+), 91. HRMS: m/z calcd for C25H29O8: 457.1862; found: 457.1868.

    • Recent examples of enantioselective Michael addition to maleimide derivatives:
    • 9a Ye W, Jiang Z, Zhao Y, Goh SL. M, Leow D, Soh Y.-T, Tan C.-H. Adv. Synth. Catal. 2007; 349: 2454
    • 9b Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Org. Lett. 2011; 13: 6106

      Selected examples of recent enantioselective Michael addition of malonate to chalcone:
    • 10a Evans DA, Rovis T, Kozlowski MC, Downey CW, Tedrow JS. J. Am. Chem. Soc. 2000; 122: 9134
    • 10b Ooi T, Ohara D, Fukumoto K, Maruoka K. Org. Lett. 2005; 7: 3195
    • 10c Wang J, Li H, Zu L, Jiang W, Xie H, Duan W, Wang W. J. Am Chem. Soc. 2006; 128: 12652
    • 10d Naka H, Kanase N, Ueno M, Kondo Y. Chem. Eur. J. 2008; 14: 5267
    • 10e Agostinho M, Kobayashi S. J. Am Chem. Soc. 2008; 130: 2430
    • 10f Wascholowski V, Knudsen KR, Mitchell CE. T, Ley SV. Chem. Eur. J. 2008; 14: 6155
    • 10g Chen D, Chen Z, Xiao X, Yang Z, Lin L, Liu X, Feng X. Chem. Eur. J. 2009; 15: 6807
    • 10h Mase N, Furusawa M, Kitagawa N, Shibagaki F, Nishiro N, Takabe K. Synlett 2010; 2340
    • 10i Mao Z, Jia Y, Li W, Wang L. J. Org. Chem. 2010; 75: 7428
    • 10j Yoshida M, Narita M, Hara S. J. Org. Chem. 2011; 76: 8513
    • 10k Espinosa M, Blay G, Cardona L, Pedro JR. Chem. Eur. J. 2013; 19: 14861
    • 10l Tsubo T, Yamada T. Synlett 2015; 26: 1111
    • 10m Lippur K, Kaabel S, Järvibg I, Rissanen K, Kanger T. J. Org. Chem. 2015; 80: 6336
  • 11 See ref. 10m for the only example for the enantioselective Michael addition to fumarate.
  • 12 Recent examples of the enantioselective Michael addition to diphenyl butenedione: Zari S, Kailas T, Kudrjashova M, Öeren M, Järving I, Tamm T, Lopp M, Kanger T. Beilstein J. Org. Chem. 2012; 8: 1452
  • 13 Compound 3ea (Representative Product) [α]D 29 –11.4 (c 1.0, CHCl3) for 98% ee. IR (ATR): 2983, 1728, 1213 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.16 (t, J = 7.2 Hz, 3 H, CH2CH 3), 1.24 (t, J = 7.6 Hz, 3 H, CH2CH 3), 1.50 (s, 3 H, CCH3), 2.56 (dd, J = 16.6, 3.2 Hz, 1 H, CH2CO), 2.77 (dd, J = 16.6, 10.4 Hz, 1 H, CH2CO), 3.76 (dd, J = 10.4, 3.2 Hz, 1 H, CHCO), 4.03 (q, J = 7.2 Hz, 2 H, CH 2CH3), 4.10 (q, J = 7.6 Hz, 2 H, CH 2CH3), 5.08 (d, J = 12.4 Hz, 1 H, CH2Ph), 5.12 (s, 2 H, CH2Ph), 5.14 (d, J = 12.4 Hz, 1 H, CH2Ph), 7.22–7.25 (m, 4 H, ArH), 7.30–7.32 (m, 6 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 13.9, 14.1, 17.9, 32.9, 45.5, 55.6, 60.8, 61.2, 67.5, 128.1, 128.2, 128.3, 128.3, 128.5, 128.5, 135.1, 169.9, 170.1, 171.5, 171.5 (two carbons overlapped). MS–FAB: m/z = 471 [M + H+], 91. HRMS: m/z calcd for C26H31O8: 471.2019; found: 471.2022.