Synthesis 2016; 48(20): 3515-3526
DOI: 10.1055/s-0035-1562579
paper
© Georg Thieme Verlag Stuttgart · New York

Combination of Enabling Technologies to Improve and Describe the Stereoselectivity of Wolff–Staudinger Cascade Reaction

B. Musio
a   University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK   Email: svl1000@cam.ac.uk
,
F. Mariani
a   University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK   Email: svl1000@cam.ac.uk
b   Universitat de Barcelona, Laboratori de Química Orgànica, Facultat de Farmàcia, Av. Joan XXIII s/n, 08028 Barcelona, Spain
,
E. P. Śliwiński
a   University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK   Email: svl1000@cam.ac.uk
,
M. A. Kabeshov
a   University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK   Email: svl1000@cam.ac.uk
,
H. Odajima
c   Saida FDS, 143-10 Itsushiki, Yaizu-shi, Shizuoka Prefecture 4250054, Japan
,
S. V. Ley*
a   University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK   Email: svl1000@cam.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 11 July 2016

Accepted after revision: 07 August 2016

Publication Date:
10 August 2016 (online)


Abstract

A new, single-mode bench-top resonator was evaluated for the microwave-assisted flow generation of primary ketenes by thermal decomposition of α-diazoketones at high temperature. A number of amides and β-lactams were obtained by ketene generation in situ and reaction with amines and imines, respectively, in good to excellent yields. The preferential formation of trans-configured β-lactams was observed during the [2+2] Staudinger cycloaddition of a range of ketenes with different imines under controlled reaction conditions. Some insights into the mechanism of this reaction at high temperature are reported, and a new web-based molecular viewer, which takes advantage from Augmented Reality (AR) technology, is also described for a faster interpretation of computed data.

Supporting Information

 
  • References

  • 1 Hessel V, Kralisch D, Kockmann N In Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes . 1st Ed. Wiley-VCH Verlag; Weinheim: 2015
    • 2a Mitic A, Gernaey KV. Chem. Eng. Technol. 2015; 38: 1699
    • 2b Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q. ChemSusChem 2013; 6: 746
    • 2c Ley SV. Chem. Rec. 2012; 12: 378
    • 2d McQuade DT, Seeberger PH. J. Org. Chem. 2013; 78: 6384
    • 3a Porta R, Benaglia M, Puglisi A. Org. Process Res. Dev. 2016; 20: 2
    • 3b Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2015; 11: 1194
    • 3c Ghislieri D, Gilmore K, Seeberger PH. Angew. Chem. Int. Ed. 2014; 678
    • 3d Gutmann B, Cantillo D, Kappe CO. Angew. Chem. Int. Ed. 2015; 54: 6688
    • 4a Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 4b Ley SV, Fitzpatrick DE, Myers RM, Battilocchio C, Ingham RJ. Angew. Chem. Int. Ed. 2015; 54: 10122
    • 5a Kirschning A, Solodenko W, Mennecke K. Chem. Eur. J. 2006; 12: 5972
    • 5b Tsubogo T, Oyamada H, Kobayashi S. Nature 2015; 520: 329
    • 5c Munirathinam R, Huskens J, Verboom W. Adv. Synth. Catal. 2015; 357: 1093
    • 5d Hornung C, Hallmark B, Mackley MR, Baxendale IR, Ley SV. Adv. Synth. Catal. 2010; 352: 1736
    • 5e Suzuki Y, Laurino P, McQuade DT, Seeberger PH. Helv. Chim. Acta 2012; 95: 2578
    • 5f Brahma A, Musio B, Ismayilova U, Nikbin N, Kamptmann SB, Siegert P, Jeromin G, Ley SV, Pohl M. Synlett 2015; 262
    • 6a Gilmore K, Seeberger PH. Chem. Rec. 2014; 14: 410
    • 6b Baumann M, Baxendale IR. React. Chem. Eng. 2016; 11
    • 6c Plutschack MB, Correia CA, Seeberger PH, Gilmore K. Organic Photoredox Chemistry in Flow . In Top. Organomet. Chem. . vol. 27. Noël T. Springer; Switzerland: 2015: 43-76
    • 6d Schuster EM, Wipf P. Isr. J. Chem. 2014; 54: 361
    • 6e Su Y, Straathof NJ. W, Hessel V, Noël T. Chem. Eur. J. 2014; 20: 10562
    • 6f Garlets ZJ, Nguyen JD, Stephenson CR. J. Isr. J. Chem. 2014; 54: 351
    • 7a Roth GP, Stalder R, Long TR, Sauer DR, Djuric SW. J. Flow Chem. 2013; 3: 34
    • 7b Kabeshov M, Musio B, Murray PR. D, Browne DL, Ley SV. Org. Lett. 2014; 16: 4618
    • 7c Stalder R, Roth GP. ACS Med. Chem. Lett. 2013; 4: 1119
    • 7d Watts K, Gattrell W, Wirth T. Beilstein J. Org. Chem. 2011; 7: 1108
    • 8a Cintas P, Tagliapietra S, Caporaso M, Tabasso S, Cravotto G. Ultrason. Sonochem. 2015; 25: 8
    • 8b Brasholz M, Johnson B, Macdonald JM, Polyzos A, Tsanaktsidis J, Saubern S, Holmes AB, Ryan JH. Tetrahedron 2010; 66: 6445
    • 9a Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 9b Gawande MB, Shelke SN, Zboril R, Varma RS. Acc. Chem. Res. 2014; 47: 1338
    • 9c Dudley GB, Stiegman AE. Chem. Sci. 2015; 6: 2144
    • 10a Kappe CO, Pieber B, Dallinger D. Angew. Chem. Int. Ed. 2013; 52: 1088
    • 10b Glasnov TN, Kappe CO. Chem. Eur. J. 2011; 17: 11956
    • 10c Xolin A, Stévenin A, Pucheault M, Norsikian S, Boyer F.-D, Beau J.-M. Org. Chem. Front. 2014; 1: 992
    • 10d Damm M, Glasnov NT, Kappe CO. Org. Process Res. Dev. 2010; 14: 215
    • 10e Kunz U, Turek T. Beilstein J. Org. Chem. 2009; 5: 1
    • 10f Ceylan S, Coutable L, Wegner J, Kirschning A. Chem. Eur. J. 2011; 17: 1884
    • 10g Kirschning A, Kupracz L, Hartwig J. Chem. Lett. 2012; 41: 562
    • 11a Smith CJ, Iglesias-Sigüenza FJ, Baxendale IR, Ley SV. Org. Biomol. Chem. 2007; 5: 2758
    • 11b Baxendale IR, Hayward JJ, Ley SV. Comb. Chem. High Throughput Screening 2007; 35: 802
    • 11c Glasnov TN, Kappe CO. Macromol. Rapid Commun. 2007; 28: 395
    • 11d Singh BK, Kaval N, Tomar S, Van Der Eycken E, Parmar VS. Org. Process Res. Dev. 2008; 12: 468
    • 11e Baxendale IR, Hornung C, Ley SV, Molina Jde M. M, Wikström A. Aust. J. Chem. 2013; 66: 131
    • 11f Bagley MC, Jenkins RL, Lubinu MC, Mason C, Wood R. J. Org. Chem. 2005; 70: 7003
  • 12 De La Hoz A, Alcázar J, Carillo J, Herrero MA, Muñoz JD. M, Prieto P, De Cózar A, Diaz-Ortiz A. Reproducibility and Scalability of Microwave-Assisted Reactions . In Microwave Heating . Chandra U. InTech; Rijeka, Croatia: 2011. pp 137−162; available at www.intechopen.co
    • 13a Strauss CR. Chem. Aust. 1990; 186
    • 13b Chen S.-T, Chiou S.-H, Wang K.-T. J. Chem. Soc., Chem. Commun. 1990; 807
    • 14a Sauks JM, Mallik D, Lawryshyn Y, Bender T, Organ M. Org. Process Res. Dev. 2014; 18: 1310
    • 14b Patil NG, Benaskar F, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Schouten JC. Org. Process Res. Dev. 2014; 18: 1400
    • 14c Horikoshi S, Sumi T, Serpone N. Chem. Eng. Process.: Process Intensif. 2013; 73: 59
    • 15a Wolff L. Justus Liebigs Ann. Chem. 1902; 325: 129
    • 15b Meier BH. Angew. Chem. Int. Ed. Engl. 1975; 14: 32
  • 16 Yokozawa S, Ohneda N, Muramatsu K, Okamoto T, Odajima H, Ikawa T, Sugiyama J, Fujita M, Sawairi T, Egami H, Hamashima Y, Egi M, Akai S. RSC Adv. 2015; 5: 10204
  • 17 Morschhäuser R, Krull M, Kayser C, Boberski C, Bierbaum R, Püschner PA, Glasnov TN, Kappe CO. Green Process. Synth. 2012; 1: 281
    • 18a Kappe CO. Chem. Soc. Rev. 2013; 42: 4977
    • 18b Hartwig J, Kirschning A. Chem. Eur. J. 2016; 22: 3044
  • 19 Tenud L. Helv. Chim. Acta 1977; 60: 975
  • 20 Hafner A, Ley SV. Synlett 2015; 26: 1470
    • 21a Linder MR, Podlech J. Org. Lett. 2001; 3: 1849
    • 21b Bandyopadhyay D, Banik BK. Helv. Chim. Acta 2010; 93: 298
    • 21c Prieto P, Liu R. Org. Biomol. Chem. 2010; 8: 929
    • 22a Qi H, Li Z, Xu J. Org. Biomol. Chem. 2011; 9: 2702
    • 22b Li B, Wang Y, Du D.-M, Xu J. J. Org. Chem. 2007; 72: 990
    • 22c Jiao L, Liang Y, Xu J. J. Am. Chem. Soc. 2006; 128: 6060
    • 22d Liang Y, Jiao L, Zhang S, Xu J. J. Org. Chem. 2005; 70: 334
    • 22e Yang Z, Xu J. Tetrahedron Lett. 2012; 53: 786
    • 23a Domingo LR, Rios-Gutierrez M, Saez JA. RSC Adv. 2015; 5: 37119
    • 23b Cossio FP, Arrieta A, Sierra MA. Acc. Chem. Res. 2008; 41: 925
    • 23c Banik BK, Lecea B, Arrieta A, de Cozar A, Cossio FP. Angew. Chem. Int. Ed. 2007; 46: 3028
    • 23d Arrieta A, Lecea B, Cossio FP. Top. Heterocycl. Chem. 2010; 22: 313
  • 24 Pauling L. Orv. Hetil. 1969; 110: 549
  • 25 Blanco F, Alkorta I, Elguero J. Croat. Chem. Acta 2009; 82: 173
  • 26 Endo-addition pathways have been also analysed for N-methyl and N-tert-butylbenzylideneimines 4b and 4e. Similar to the described N-phenylbenzylideneimine 4h, they were characterised with higher activation barriers. For the 3D structures, see the Supporting Information
  • 27 Wright SW In Name Reactions for Carbocyclic Ring Formations . Li JJ. John Wiley & Sons; Hoboken, NJ: 2010: pp 45-69
  • 28 Kirmse W, Rondan NG, Houk KN. J. Am. Chem. Soc. 1984; 106: 7989
  • 29 IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") . Compiled byMcNaught A. D, Wilkinson A. Blackwell Scientific Publications; Oxford: 1997. XML online corrected version: http://goldbook.iupac.org (2006) created by Nic M., Jirat J., Kosata B., updates compiled by A. Jenkins. ISBN 0-9678550-9-8
  • 30 Harvey MJ, Mason NJ, Rzepa HS. J. Chem. Inf. Model. 2014; 54: 2627
    • 31a Gillet A, Sanner M, Stoffler D, Goodsell D, Olson A. IEEE Visualization 2004; 235
    • 31b Nunez M, Quiros R, Nunez I, Carda JB, Camahort E. 5th WSEAS / IASME (EE'08). 2008; 271-277
    • 31c http://elements4d.daqri.com/#lessons.
    • 31d http://sponholtzproductions.com/Product_Reviews.html.
  • 32 Acronyms: Quick Response (QR) and Uniform Resource Locator (URL).
  • 33 https://developer.mozilla.org/en/docs/Web/API/MediaStream.
  • 34 Hamming RW. Bell Syst. Tech. J. 1950; 29: 147
    • 35a Chai J.-D, Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
    • 35b Kendall RA, Dunning TH. Jr, Harrison RJ. J. Chem. Phys. 1992; 96: 6796

      For benchmarking studies showing high accuracy and applicability of the ωB97xD/cc-PVTZ//ωB97xD/cc-PVDZ method to organic transformations, see:
    • 36a Schenker S, Schneider C, Tsogoeva SB, Clark T. J. Chem. Theory Comput. 2011; 7: 3586
    • 36b Kabeshov MA, Kysilka O, Rulíšek L, Suleimanov YV, Bella M, Malkov AV, Kočovský P. Chem. Eur. J. 2015; 21: 12026
  • 37 Acetonitrile (ε = 35.688) was used as solvent; for more details see: Marenich AV. Cramer C. J, Truhlar DG. J. Phys. Chem. B 2009; 113: 6378
  • 38 Gaussian 09, Revision D.01. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam MJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian, Inc.; Wallingford CT: 2013
  • 39 The SMD intrinsic atomic Coulomb radii were used as implemented in NWChem software.
  • 40 http://www.nwchem-sw.org/index.php/Release65:SMD_Model.
  • 41 http://en.wikipedia.org/wiki/CPK_coloring.
    • 42a Tarini M, Cignoni P, Montani C. IEEE Trans. Vis. Comput. Graph. 2006; 12: 1237
    • 42b Rose AS, Hildebrand PW. Nucleic Acids Res. 2015; 1: 1; for more details, see: http://proteinformatics.charite.de/ngl/html/ngl.html
    • 42c Rego N, Koes D. Bioinformatics­ 2014; 8: 1322; for more details, see: http://3dmol.csb.pitt.edu/index.html
    • 42d Mwalongo F, Krone M, Becher M, Reina G, Ertl T In Proceeding Web3D ’15. Proceeding of the 20th international conference on 3D web technology. pp. 115–122;
  • 43 https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/ Global_Objects/JSON.
  • 44 Revision 73. For more details, see: http://threejs.org/.
    • 45a Garrido-Jurado S, Muñoz-Salinas R, Madrid-Cuevas FJ, Marín-Jiménez MJ. Pattern Recognition 2014; 47: 2280; https://github.com/jcmellado/js-aruco
    • 45b http://opencv.org/
  • 46 http://cg.skeelogy.com/skarfjs/.
  • 47 Toma T, Shimokawa J, Fukuyama T. Org. Lett. 2007; 9: 10
  • 48 Sharpe RJ, Malinowski JT. Johnson J. S. J. Am. Chem. Soc. 2013; 135: 17990
  • 49 Lancou A, Haroun H, Kundu UK, Legros F, Zimmermann N, Mathe-Allainmat M, Lebreton J, Dujardin G, Gaulon-Nourry C, Gosselin P. Tetrahedron 2012; 68: 9652
  • 50 Nikolaev VA, Utkin PY, Korobitsyna IK. Zh. Org. Khim. 1989; 25: 1176
  • 51 Watson AJ. A, Wakeham RJ, Maxwell AC, Williams JM. J. Tetrahedron 2014; 70: 3683
  • 52 Lundberg H, Tinnis F, Adolfsson H. Synlett 2012; 23: 2201
  • 53 Starkov P, Sheppard TD. Org. Biomol. Chem. 2011; 9: 1320
  • 54 Ghosh SC, Hong SH. Eur. J. Org. Chem. 2010; 4266
  • 55 Ramalingam B, Seayad AM, Chuanzhao L, Garland M, Yoshinaga K, Wadamoto M, Nagata T, Chai CL. L. Adv. Synth. Catal. 2010; 352: 2153
  • 56 Perrone S, Salomone A, Caroli A, Falcicchio A, Citti C, Cannazza G, Troisi L. Eur. J. Org. Chem. 2014; 5932
  • 57 Shu WM, Ma JR, Zheng KL, Sun HY, Wang M, Yang Y, Wu AX. Tetrahedron 2014; 70: 9321
  • 58 Schoumacker S, Hamelin O, Téti S, Pécaut J, Fontecave M. J. Org. Chem. 2005; 70: 301
  • 59 Troisi L, Ronzini L, Granito C, Vitis LD, Pindinelli E. Tetrahedron 2006; 62: 1564
  • 60 Bennett JS, Charles KL, Miner MR, Heuberger CF, Spina EJ, Bartels MF, Foreman T. Green Chem. 2009; 11: 166
  • 61 Knöpke LR, Nemati N, Köckritz A, Brückner A, Bentrup U. ChemCatChem 2010; 2: 273
  • 62 Kim I, Roh SW, Lee DG, Lee C. Org. Lett. 2014; 16: 2482
  • 63 Zhang Z, Liu Y, Ling L, Li Y, Dong Y, Gong M, Zhao X, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 4330
  • 64 Troisi L, Pindinelli E, Strusi V, Trinchera P. Tetrahedron: Asymmetry 2009; 20: 368
  • 65 Bose AK, Chawla HP. S, Dayal B, Foleys DA. Org. Magn. Reson. 1976; 8: 151