Synthesis 2016; 48(24): 4451-4458
DOI: 10.1055/s-0035-1562522
paper
Georg Thieme Verlag Stuttgart · New York

Asymmetric Organocatalytic Synthesis of 4-Aminoisochromanones via a Direct One-Pot Intramolecular Mannich Reaction

Fabrizio Vetica
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Jeanne Fronert
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Rakesh Puttreddy
b  Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
,
Kari Rissanen
b  Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
,
Dieter Enders*
a  Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 01 July 2016

Accepted: 05 July 2016

Publication Date:
16 August 2016 (online)


Abstract

A highly stereoselective one-pot intramolecular Mannich reaction using 2-oxopropyl-2-formylbenzoates and anilines as substrates, catalyzed by a secondary amine, has been developed. The procedure leads to a new class of 4-aminoisochromanones bearing two adjacent stereocentres in good yields (up to 85%) with excellent cis-stereoselectivities (dr up to 99:1) and ee values of 92–99%.

Supporting Information

 
  • References

  • 1 Kaushik A. Arya SK. Vasudev A. Bhansali S. Open J. Appl. Biosens. 2013; 2: 1
  • 2 Zhang H. Matsuda H. Kumahara A. Ito Y. Nakamura S. Yoshikawa M. Bioorg. Med. Chem. Lett. 2007; 17: 4972
  • 3 Adams C. Ksander GM. Papillon J. Patent WO/2007/117982, 2007
    • 4a Grove JF. Pople M. Mycopathologia 1981; 76: 65
    • 4b Grove JF. Pople M. J. Chem. Soc., Perkin Trans. 1 1979; 2048
    • 5a Ma G.-H. Jiang B. Tu X.-J. Ning Y. Tu S.-J. Li G. Org. Lett. 2014; 16: 4504
    • 5b Fang B. Xie X. Zhao C. Jing P. Li H. Wang Z. Gu J. She X. J. Org. Chem. 2013; 78: 6338
    • 5c Chen J. Zhou L. Tan CK. Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
    • 5d Saeed A. Eur. J. Chem. 2011; 2: 117
    • 5e Pinchuk IV. Bressollier P. Sorokulova IB. Verneuil B. Urdaci MC. Res. Microbiol. 2002; 153: 269

      For reviews on organocatalytic Mannich reactions, see:
    • 7a Ghosh AS. Bhowmick M. Mondal A. Garai H. Bhowmick KC. Curr. Organocatal. 2016; 3: 133
    • 7b Gasperi T. Orsini M. Vetica F. de Figueiredo RM. In Organocatalytic Asymmetric Multicomponent Reactions . Herrera RP. Marqués-López E. Wiley; Hoboken: 2015: 16
    • 7c Hayashi Y. Yuki Gosei Kagaku Kyokaishi 2014; 72: 1228
    • 7d Cai X.-H. Xie B. ARKIVOC 2013; (i): 264
    • 7e Córdova A. Acc. Chem. Res. 2004; 37: 102
    • 8a List B. J. Am. Chem. Soc. 2000; 122: 9336
    • 8b List B. Pojarliev P. Biller WT. Martin HJ. J. Am. Chem. Soc. 2002; 124: 827

      For further information on domino and multicomponent transformations, see:
    • 9a Akiyama T. In Comprehensive Organic Synthesis II . Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 629
    • 9b Karimi B. Enders D. Jafari E. Synthesis 2013; 45: 2769
    • 9c Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev. 2007; 107: 5471
    • 9d Nair V. Rajesh C. Vinod AU. Bindu S. Sreekanth AR. Mathen JS. Balagopal L. Acc. Chem. Res. 2003; 36: 899
    • 9e Orru RV. A. de Greef M. Synthesis 2003; 1471
    • 9f Hulme C. Gore V. Curr. Med. Chem. 2003; 10: 51
    • 9g Tietze LF. Modi A. Med. Res. Rev. 2000; 20: 304
    • 9h Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 9i Bienaymé H. Hulme C. Oddon G. Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 10a Davis FA. Phosphorus, Sulfur, Silicon Rel. Elem. 2016; 191: 297
    • 10b Enders D. Vrettou M. Synthesis 2006; 2155
    • 10c Enders D. Grondal C. Vrettou M. Synthesis 2006; 3597
    • 10d Enders D. Grondal C. Vrettou M. Raabe G. Angew. Chem. Int. Ed. 2005; 44: 4079
    • 11a Davis FA. Chao B. Rao A. Org. Lett. 2001; 3: 3169
    • 11b Ueda H. Satoh H. Matsumoto K. Sugimoto K. Fukuyama T. Tokuyama H. Angew. Chem. Int. Ed. 2009; 48: 7600
    • 11c Hamada Y. Kakugawa K. Nemoto T. Kohno Y. Synthesis 2011; 2540
    • 11d Nishiyama Y. Han-ya Y. Yokoshima S. Fukuyama T. J. Am. Chem. Soc. 2014; 136: 6598
    • 11e Sato T. Ueda H. Tokuyama H. Tetrahedron Lett. 2014; 55: 7177
    • 12a Koley D. Krishna Y. Srinivas K. Khan AA. Kant R. Angew. Chem. Int. Ed. 2014; 53: 13196
    • 12b Chandrasekhar S. Vijeender K. Sridhar C. Tetrahedron Lett. 2007; 48: 4935
  • 13 Capobianco A. Di Mola A. Intintoli V. Massa A. Capaccio V. Roiser L. Waser M. Palombi L. RSC Adv. 2016; 6: 31861
    • 14a Mondal B. Pan SC. Org. Biomol. Chem. 2014; 12: 9789
    • 14b Zheng H. Liu Q. Wen S. Yang H. Luo Y. Tetrahedron: Asymmetry 2013; 24: 875
  • 15 Kanagaraj K. Pitchumani K. J. Org. Chem. 2013; 78: 744
  • 16 Hu W. Lin J.-P. Song L.-R. Long Y.-Q. Org. Lett. 2015; 17: 1268
  • 17 Fronert J. Bisschops T. Cassens-Sasse E. Atodiresei I. Enders D. Synthesis 2013; 45: 1708
    • 18a Meng X.-Y. Sun M.-Y. Zhao F.-J. Dang Y.-J. Jiang B. Tu S.-J. Synthesis 2014; 46: 3207
    • 18b Marcaccini S. Menchi G. Trabocchi A. Tetrahedron Lett. 2011; 52: 2673
    • 18c Faggi C. Garcia-Valverde M. Marcaccini S. Menchi G. Org. Lett. 2010; 12: 788
    • 18d Acke RJ. Stevens CV. Roman BI. Org. Process Res. Dev. 2008; 12: 921
    • 18e Opatz T. Ferenc D. Eur. J. Org. Chem. 2005; 817
  • 19 CCDC-1482605 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 20a Hartikka A. Arvidsson PI. Tetrahedron: Asymmetry 2004; 15: 1831
    • 20b Franckevičius V. Knudsen KR. Ladlow M. Longbottom DA. Ley SV. Synlett 2006; 889