Synlett 2016; 27(17): 2505-2509
DOI: 10.1055/s-0035-1562480
letter
© Georg Thieme Verlag Stuttgart · New York

Acid-Catalyzed Oxidative Addition of Thiols to Olefins and Alkynes for a One-Pot Entry to Sulfoxides

Hui-Lan Yue
,
Martin Klussmann*
Further Information

Publication History

Received: 01 June 2016

Accepted after revision: 25 June 2016

Publication Date:
25 July 2016 (online)

Abstract

An oxidative variant of the thiol-ene reaction has been developed, achieving the direct addition of thiols to olefins to form sulfoxides. The reaction uses tert-butyl hydroperoxide as oxidant and methanesulfonic acid as catalyst. The latter is believed to catalyze the oxidation of the intermediate sulfide to the sulfoxide. No special precautions are necessary to exclude oxygen, yet the products are formed without oxidation at the β-position. Styrenes, acrylic acid derivatives, alkynes, and thiophenols gave the highest yields, while aliphatic olefins and thiols were less effective.

Supporting Information

 
  • References and Notes

  • 1 New address: Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, P. R. of China.
    • 2a Pan X.-Q, Zou J.-P, Yi W.-B, Zhang W. Tetrahedron 2015; 71: 7481
    • 2b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
    • 2c Lowe AB. Polym. Chem. 2014; 5: 4820
    • 2d Hoyle CE, Bowman CN. Angew. Chem. Int. Ed. 2010; 49: 1540
  • 3 Kharasch MS, Nudenberg W, Mantell GJ. J. Org. Chem. 1951; 16: 524

    • For selected examples, see:
    • 4a Surendra K, Krishnaveni NS, Sridhar R, Rao KR. J. Org. Chem. 2006; 71: 5819
    • 4b Kamal A, Reddy DR Rajendar J. Mol. Catal. A: Chem. 2007; 272: 26
    • 4c Zhou S.-F, Pan X, Zhou Z.-H, Shoberu A, Zou J.-P. J. Org. Chem. 2015; 80: 3682
    • 4d Xi H, Deng B, Zong Z, Lu S, Li Z. Org. Lett. 2015; 17: 1180

      For selected examples, see:
    • 5a Oswald A. J. Org. Chem. 1959; 24: 443
    • 5b O’Neill PM, Mukhtar A, Ward SA, Bickley JF, Davies J, Bachi MD, Stocks PA. Org. Lett. 2004; 6: 3035
    • 5c O’Neill PM, Verissimo E, Ward SA, Davies J, Korshin EE, Araujo N, Pugh MD, Cristiano ML. S, Stocks PA, Bachi MD. Bioorg. Med. Chem. Lett. 2006; 16: 2991
    • 5d Kim J, Li HB, Rosenthal AS, Sang D, Shapiro TA, Bachi MD, Posner GH. Tetrahedron 2006; 62: 4120

      For selected examples, see:
    • 6a Keshari T, Yadav VK, Srivastava VP, Yadav LD. S. Green Chem. 2014; 16: 3986
    • 6b Singh AK, Chawla R, Keshari T, Yadav VK, Yadav LD. S. Org. Biomol. Chem. 2014; 12: 8550
    • 6c Zhou S.-F, Pan X.-Q, Zhou Z.-H, Shoberu A, Zhang P.-Z, Zou J.-P. J. Org. Chem. 2015; 80: 5348
    • 7a Smith LH. S, Coote SC, Sneddon HF, Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832
    • 7b Feldman KS. Tetrahedron 2006; 62: 5003
    • 7c Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
    • 8a Sipos G, Drinkel EE, Dorta R. Chem. Soc. Rev. 2015; 44: 3834
    • 8b Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
    • 9a Richter H, Beckendorf S, Mancheño OG. Adv. Synth. Catal. 2011; 353: 295
    • 9b García-Rubia A, Fernández-Ibáñez MÁ, Gómez Arrayás R, Carretero JC. Chem. Eur. J. 2011; 17: 3567
    • 9c Yu M, Liang Z, Wang Y, Zhang Y. J. Org. Chem. 2011; 76: 4987
    • 9d Zhang X, Yu M, Yao J, Zhang Y. Synlett 2012; 23: 463
    • 9e Wang B, Liu Y, Lin C, Xu Y, Liu Z, Zhang Y. Org. Lett. 2014; 16: 4574
    • 10a Jacob C. Nat. Prod. Rep. 2006; 23: 851
    • 10b Bentley R. Chem. Soc. Rev. 2005; 34: 609
    • 10c Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
    • 10d Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
    • 10e Reggelin M, Zur C. Synthesis 2000; 1
  • 11 O’Mahony GE, Kelly P, Lawrence SE, Maguire AR. ARKIVOC 2011; (i): 1

    • For selected examples, see:
    • 12a Caupène C, Boudou C, Perrio S, Metzner P. J. Org. Chem. 2005; 70: 2812
    • 12b Maitro G, Prestat G, Madec D, Poli G. J. Org. Chem. 2006; 71: 7449
    • 12c Maitro G, Vogel S, Prestat G, Madecó D, Poli G. Org. Lett. 2006; 8: 5951
    • 12d Menichetti S, Aversa MC, Bonaccorsi P, Lamanna G, Moraru A. J. Sulfur Chem. 2006; 27: 393
    • 12e Maitro G, Vogel S, Sadaoui M, Prestat G, Madec D, Poli G. Org. Lett. 2007; 9: 5493
    • 12f Foucoin F, Caupène C, Lohier J.-F, Sopkova de Oliveira Santos J, Perrio S, Metzner P. Synthesis 2007; 1315
    • 12g Gelat F, Lohier J.-F, Gaumont A.-C, Perrio S. Adv. Synth. Catal. 2015; 357: 2011
    • 12h Jia T, Zhang M, Jiang H, Wang CY, Walsh PJ. J. Am. Chem. Soc. 2015; 137: 13887
    • 13a Bonadies F, De Angelis F, Locati L, Scettri A. Tetrahedron Lett. 1996; 37: 7129
    • 13b Firouzabadi H, Iranpoor N, Jafari AA, Riazymontazer E. Adv. Synth. Catal. 2006; 348: 434
    • 13c Liao S, Čorić I, Wang Q, List B. J. Am. Chem. Soc. 2012; 134: 10765
  • 14 Synthesis of (Phenethylsulfinyl)benzene (1a) – Typical Procedure To a 1 mL screw-cap vial charged with a magnetic stirring bar, anhydrous MeCN (0.5 mL), styrene (0.5 mmol, 1 equiv), thiophenol (1.0 mmol, 2 equiv), t-BuOOH (5.5 M solution in decane, 1.5 mmol, 3 equiv), and methanesulfonic acid (3.55 μL, 10 mol%) were added in that order. The reaction mixture was stirred and heated to 40 °C. The vial was closed containing a small headspace of air. After full conversion was reached, as indicated by TLC, the reaction mixture was diluted, a small amount of silica was added, and the solvent was removed under vacuum. The resulting residue was purified by column chromatography on silica gel (hexane–acetone = 8:1) to afford 1a as a clear oil (102 mg, 89%). 1H NMR (500 MHz, CDCl3): δ = 7.64–7.62 (m, 2 H), 7.54–7.48 (m, 3 H), 7.29–7.26 (m, 2 H), 7.22–7.16 (m, 3 H), 3.12–2.99 (m, 3 H), 2.91–2.86 (m, 1 H). 13C NMR (125 MHz, CDCl3): δ = 143.63 (Ar q), 138.77 (Ar q), 131.05 (Ar CH), 129.30 (Ar CH), 128.76 (Ar CH), 128.57 (Ar CH), 126.72 (Ar CH), 124.02 (Ar CH), 58.33 (CH2), 28.19 (CH2). ESI-HRMS: m/z calcd for [C14H14OSNa]+: 253.065756 [M + Na+]; found: 253.065900.
  • 15 Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
  • 16 Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN. Chem. Mater. 2014; 26: 724
  • 17 Kharasch MS, Mayo FR. J. Am. Chem. Soc. 1933; 55: 2468