Synlett 2016; 27(18): 2591-2596
DOI: 10.1055/s-0035-1562478
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Guanidine Formation under Mild Acidic Conditions

Kohei Takeuchi
b  Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
,
Atsushi Nakayama
a  Department of Phamaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan   Email: namba@tokushima-u.ac.jp
,
Keiji Tanino
c  Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810   Japan   Email: ktanino@sci.hokudai.ac.jp
,
Kosuke Namba*
a  Department of Phamaceutical Science, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan   Email: namba@tokushima-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 31 May 2016

Accepted after revision: 23 June 2016

Publication Date:
01 August 2016 (online)


Abstract

An efficient method for converting isothioureas into guanidines was developed. The use of amine salts of bis(trifluoromethanesulfonyl)imide as a nitrogen source was found to induce an efficient conversion under weak acidic conditions at 50 °C. The conversion was applicable to the various amines and carbamate-protected thioureas, and various carbamate-protected cyclic guanidines were obtained in high yields. In particular, ammonium bis(trifluoromethanesulfonyl)imide salt is a useful N1 source with which to construct monoprotected cyclic guanidines.

Supporting Information

 
  • References and Notes

    • 1a Tahara Y. J. Pharm. Soc. Jpn. 1909; 29: 587
    • 1b Tahara Y. Biochem. Z. 1911; 30: 255
    • 1c Goto T, Kishi Y, Takahashi S, Hirata Y. Tetrahedron 1965; 21: 2059
    • 1d Tsuda K, Ikuma S, Kawamura M, Tachikawa R, Sakai K, Tamura C, Amakasu O. Chem. Pharm. Bull. 1964; 12: 1357
    • 1e Woodward RB. Pure. Appl. Chem. 1964; 9: 49
    • 1f Furusaki A, Tomie Y, Nitta I. Bull. Chem. Soc. Jpn. 1970; 43: 3332
  • 2 Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, Brosse CD, Mai S, Truneh A, Carte B. J. Org. Chem. 1995; 60: 1182
  • 3 Iwatsuki M, Uchida R, Yoshijima H, Ui H, Shiomi K, Matsumoto A, Takahashi Y, Abe A, Tomoda H, Omura S. J. Antibiot. 2008; 61: 222
  • 4 Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin T.-H, Hutchison TL, Elliott AJ, Parker CD, Ananth SL, Horn LL, Laver GW, Montgomery JA. J. Med. Chem. 2000; 43: 3482
    • 5a Blondeau P, Segura M, de Mendoza J, Pérez-Fernández R. Chem. Soc. Rev. 2007; 36: 198
    • 5b Sullivan JD, Giles RL, Looper RE. Curr. Bioact. Compd. 2009; 5: 39
    • 6a Corey EJ, Grogan MJ. Org. Lett. 1999; 1: 157
    • 6b Terada M, Ube H, Yaguchi Y. J. Am. Chem. Soc. 2006; 128: 1454
    • 6c Kiesewetter MK, Scholten MD, Kirn N, Weber RL, Hedrick JL, Waymouth RM. J. Org. Chem. 2009; 74: 9490
    • 6d Misaki T, Takimoto G, Sugimura T. J. Am. Chem. Soc. 2010; 132: 6286
    • 6e Alsarraf J, Ammar YA, Robert F, Cloutet E, Cramail H, Landais Y. Macromolecules 2012; 45: 2249
    • 6f Huang Li, Li J, Zhao Y, Ye X, Liu Y, Yan L, Tan C.-H, Liu H, Jiang Z. J. Org. Chem. 2015; 80: 8933

      For recent reviews, see:
    • 7a Berlinck RG. S, Burtoloso AC. B, Kossuga MH. Nat. Prod. Rep. 2008; 25: 919
    • 7b Zhang W.-X, Xu L, Xi Z. Chem. Commun. 2015; 51: 254
    • 7c Alonso-Moreno C, Antiñolo A, Carrillo-Hermosilla F, Otero A. Chem. Soc. Rev. 2014; 43: 3406
    • 7d Tahir S, Badshah A, Hussain RA. Bioorg. Chem. 2015; 59: 39
    • 8a Kyoung S, Qian L. Tetrahedron Lett. 1993; 34: 7677
    • 8b Kent DR, Cody WL, Doherty AM. Tetrahedron Lett. 1996; 37: 8711
    • 8c Levallet C, Lerpiniere J, Ko SY. Tetrahedron 1997; 53: 5291
    • 8d Gers T, Kunce D, Markowski P, Izdebski J. Synthesis 2004; 37
    • 8e Bergeron RJ, McManis JS. J. Org. Chem. 1987; 52: 1700
    • 8f Porcheddu A, De Lua L, Giacomelli G. Synlett 2009; 3368
    • 9a Boukouvalas J, Golding BT. Angew. Chem. Suppl. 1983; 22: 860
    • 9b Bernatowicz MS, Wu YL, Matsueda GR. J. Org. Chem. 1992; 57: 2497
    • 9c Bernatowicz MS, Wu YL, Matsueda GR. Tetrahedron Lett. 1993; 34: 3389
    • 9d Drake B, Patek M, Lebel M. Synthesis 1994; 579
    • 9e Robinson S, Roskamp EJ. Tetrahedron 1997; 53: 6697
    • 9f Yong YF, Kowalski JA, Lipton MA. J. Org. Chem. 1997; 62: 1540
    • 9g Golding BT, Mitchinson A, Clegg W, Elsegood MR. J, Griffin RJ. J. Chem. Soc., Perkin Trans. 1 1999; 349
    • 9h Dräger G, Solodenko W, Messinger J, Schön U, Kirschning A. Tetrahedron Lett. 2002; 43: 1401
    • 9i Castillo-Melendez JA, Golding BT. Synthesis 2004; 1655
    • 9j Solodenko W, Bröker P, Messinger J, Schön U, Kirschning A. Synthesis 2006; 461
    • 10a Feichtinger K, Zapf C, Sings HL, Goodman M. J. Org. Chem. 1998; 63: 3804
    • 10b Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M. J. Org. Chem. 1998; 63: 8432
    • 10c Kim H, Mathew F, Ogbu C. Synlett 1999; 193
    • 10d Linton BR, Carr AJ, Orner BP, Hamilton AD. J. Org. Chem. 2000; 65: 1566
    • 11a Maryanoff CA, Stanzione RC, Plampin JN, Mills JE. J. Org. Chem. 1986; 51: 1882
    • 11b Noël R, Song X, Jiang R, Chalmers MJ, Griffin PR, Kamenecka TM. J. Org. Chem. 2009; 74: 7595
    • 12a Katritzky AR, Rogovoy BV, Chassaing C, Vvedensky V. J. Org. Chem. 2000; 65: 8080
    • 12b Wu Y.-Q, Hamilton SK, Wilkinson DE, Hamilton GS. J. Org. Chem. 2002; 67: 7553
    • 12c Musiol H.-J, Moroder L. Org. Lett. 2001; 3: 3859
    • 13a Ref. 8d.
    • 13b Shinada T, Umezawa T, Ando T, Kozuma H, Ohfune Y. Tetrahedron Lett. 2006; 47: 1945
    • 13c Li Q, Wang S, Zhou S, Yang G, Zhu X, Liu Y. J. Org. Chem. 2007; 72: 6763
    • 13d Zhu X, Du Z, Xu F, Shen Q. J. Org. Chem. 2009; 74: 6347
    • 13e Looper RE, Haussener TJ, Mack JB. C. J. Org. Chem. 2011; 76: 6967
    • 13f Li J, Neuville L. Org. Lett. 2013; 15: 6124
    • 13g Tsubokura K, Iwata T, Taichi M, Kurbangalieva A, Fukasec K, Nakao Y, Tanaka K. Synlett 2014; 25: 1302
    • 13h Zeng C.-J, Chen C.-J, Chang C.-W, Chen H.-T, Chien T.-C. Aust. J. Chem. 2014; 67: 1134
    • 13i Li P, Cheng G, Zhang H, Xu X, Gao J, Cui X. J. Org. Chem. 2014; 79: 8156
    • 13j Tran LQ, Li J, Neuville L. J. Org. Chem. 2015; 80: 6102
    • 14a Dukat M, Abdel-Rahman A, Ismaiel A, Ingher S, Teitler M, Gyermek L, Glennon R. J. Med. Chem. 1996; 39: 4017
    • 14b Filosa R, Buonerba M, Loddo R. J. Pham. Pharmacol. 2006; 58: 1415
    • 14c Ube H, Uraguchi D, Terada M. J. Organomet. Chem. 2007; 692: 545
    • 14d Genc M, Servi S. Synth. Commun. 2009; 39: 3263
    • 14e Wahab KM, Uddin MK, Ali M, Rahman MS, Rashid MA, Chowdhury R. J. Heterocycl. Chem. 2014; 51: 216
    • 14f Kitamura M, Yuasa R, Vranken DL. V. Tetrahedron Lett. 2015; 56: 3027

      For patents, see:
    • 15a Shum P, Gross A, Ma L, McGarry DG, Merriman GH, Rampe D, Ringheim G.h, Sabol JS, Volz Francis AA. US 20050026916, 2005
    • 15b Askew BC, Breslin MJ, Duggan ME, Hutchinson JH, Meissner RS, Perkins JJ, Steele TG, Patane MA. A. WO 2001053262, 2001
    • 16a Daboun HA, Ibrahim YA. J. Heterocycl. Chem. 1982; 19: 41
    • 16b Wiskur SL, Lavigne JJ, Metzger A, Tobey SL, Lynch V, Anslyn EV. Chem. Eur. J. 2004; 10: 3792
    • 16c Lanman BA, Overman LE. Heterocycles 2006; 70: 557
    • 16d Subtel’na I, Atamanyuk D, Szymańska E, Kieć-Kononowicz K, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Bioorg. Med. Chem. 2010; 18: 5090
    • 16e Lewellyn K, Bialonska D, Chaurasiya ND, Tekwani B, Zjawiony JK. Bioorg. Med. Chem. Lett. 2012; 22: 4926
  • 17 Namba K, Takeuchi K, Kaihara Y, Oda M, Nakayama A, Nakayama A, Yoshida M, Tanino K. Nat. Commun. 2015; 6: 8731

    • In the case of unprotected acyclic isothioureas, there have been several examples of guanidinylation reaction under mild acidic conditions. For selected recent examples, see:
    • 18a Chai B, Wang S, Yu W, Li H, Song C, Xu Y, Liu C, Chang J. Bioorg. Med. Chem. Lett. 2013; 23: 3505
    • 18b Aoyagi N, Furusho Y, Endo T. Synlett 2014; 25: 983
    • 18c Vazdar K, Kunetskiy R, Saame J, Kaupmees K, Leito I, Jahn U. Angew. Chem. Int. Ed. 2014; 53: 1435
  • 19 General Procedure for the Transformation of Isothiourea 1 into Guanidine 3a To a solution of isothiourea 1 (100 mg, 0.359 mmol) in DCE (1.8 mL) were added BnNH2 (39.2 μL, 0.718 mmol) and 1 M DCE solution of Tf2NH (718 μL, 0.718 mmol) at 0 °C. After being stirred at 50 °C for 5 h, the reaction was quenched with 1 M NaOH. The mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were washed with sat. aq NaHCO3 solution, dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography (hexane–EtOAc, 1:2 to 0:1) to afford guanidine 3a (116 mg, 0.345 mmol, 96%) as yellow oil. Analytical Data Compound 3a: 1H NMR (500 MHz, CDCl3): δ = 7.45–7.25 (m, 10 H), 7.05 (br s, 1 H), 5.17 (s, 2 H), 4.48 (s, 2 H), 3.58 (s, 2 H), 1.30 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 153.16, 151.12, 138.01, 135.21, 128.65, 128.58, 128.55, 128.13, 127.60, 127.37, 67.73, 60.93, 58.63, 46.76, 29.70. IR (KBr): 3378, 3032, 2962, 2926, 2360, 2341, 1710, 1648, 1532, 1460, 1402, 1353, 1324, 1183, 1127, 1005, 913, 801, 742, 697, 610, 442, 418 cm–1. ESI-HRMS: m/z [M + H]+ calcd for C20H24N3O2: 338.1869; found: 338.1863. Compound 3b: 1H NMR (500 MHz, CDCl3): δ = 7.43–7.33 (m, 5 H), 6.58–6.45 (br s, 1 H), 5.16 (s, 2 H), 3.85 (oct, J = 6.5 Hz, 1 H), 3.50 (s, 2 H), 1.25 (s, 6 H), 1.20 (d, J = 6.5 Hz, 6 H). 13C NMR (125 MHz, CDCl3): δ = 153.16, 149.85, 135.43, 128.58, 128.45, 128.40, 67.34, 60.98, 58.24, 43.93, 29.82, 22.73. IR (KBr): 3374, 2967, 2928, 2360, 1712, 1646, 1529, 1457, 1402, 1358, 1322, 1280, 1190, 1165, 1131, 1059, 988, 913, 765, 743, 698, 597, 576, 419 cm–1. ESI-HRMS: m/z [M + H]+ calcd for C16H24N3O2: 290.1862; found: 290.1863.
    • 20a Zehavi U, Amit B, Patchornik A. J. Org. Chem. 1972; 37: 2281
    • 20b Zehavi U, Patchornik A. J. Org. Chem. 1972; 37: 2285
    • 20c Ohtsuka E, Tanaka S, Ikehara M. J. Am. Chem. Soc. 1978; 100: 8210
    • 20d Chow YL In The Chemistry of Amino, Nitroso and Nitro Compounds and Their Derivatives. Patai S. Wiley; New York: 1982. Suppl. F, Part 1 181
    • 20e Klán P, Šolomek T, Bochet CG, Blanc A, Givens R, Rubina M, Popik V, Kostikov A, Wirz J. Chem. Rev. 2013; 113: 119

      For recent application of nitrobenzyl group to total synthesis, see:
    • 21a Groneberg RD, Miyazaki T, Stylianides NA, Schulze TJ, Stahl W, Schreiner EP, Suzuki T, Iwabuchi Y, Smith AL, Nicolaou KC. J. Am. Chem. Soc. 1993; 115: 7593
    • 21b Smith AL, Pitsinos EN, Hwang CK, Mizuno Y, Saimoto H, Scarlato GR, Suzuki T, Nicolaou KC. J. Am. Chem. Soc. 1993; 115: 7612
    • 21c Nicolaou KC, Hummel CW, Nakada M, Shibayama K, Pitsinos EN, Saimoto H, Mizuno Y, Baldenius KU, Smith AL. J. Am. Chem. Soc. 1993; 115: 7625
    • 21d Nicolaou KC, Lu Z, Li R, Woods JR, Sohn T. J. Am. Chem. Soc. 2015; 137: 8716
    • 22a Forsyth CM, MacFarlane DR, Golding JJ, Huang J, Sun J, Forsyth M. Chem. Mater. 2002; 14: 2103
    • 22b Davidson MG, Raithby PR, Johnson AL, Bolton PD. Eur. J. Inorg. Chem. 2003; 3445
    • 22c Aidoui A, Bendahou S, Demonceau A, Delaude L. J. Comb. Chem. 2008; 10: 886