Synthesis 2016; 48(20): 3589-3596
DOI: 10.1055/s-0035-1561656
paper
© Georg Thieme Verlag Stuttgart · New York

Practical Method for the Preparation of 2,2-Dimethyl-5-{aryl[(hetero)aryl]methyl}-1,3-dioxane-4,6-diones: Synthesis and Mechanistic Study

Ewelina Najda
Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland   Email: mak@pg.gda.pl
,
Anna Zakaszewska
Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland   Email: mak@pg.gda.pl
,
Karolina Janikowska*
Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland   Email: mak@pg.gda.pl
,
Sławomir Makowiec*
Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland   Email: mak@pg.gda.pl
› Author Affiliations
Further Information

Publication History

Received: 17 February 2016

Accepted after revision: 02 May 2016

Publication Date:
10 June 2016 (online)


Abstract

An efficient practical synthetic procedure has been developed for the synthesis of 2,2-dimethyl-5-{aryl[(hetero)aryl]methyl}-1,3-dioxane-4,6-diones through Friedel–Crafts alkylation. The scope and limitation of the reaction of 2,2-dimethyl-5-arylidene-1,3-dioxane-4,6-diones with π-excess aromatic systems have been delineated.

Supporting Information

 
  • References

    • 1a Lipson VV, Gorobets NY. Mol. Divers. 2009; 13: 399
    • 1b Ivanov AS. Chem. Soc. Rev. 2008; 37: 789
    • 1c Gaber AE. M, McNab H. Synthesis 2001; 2059
  • 2 Dumas AM, Fillion E. Acc. Chem. Res. 2010; 43: 440
  • 3 Bhattacharya Ch, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturelloc P. Org. Biomol. Chem. 2009; 7: 3413
  • 4 Xing Ch, Wu P, Skibo EB. J. Med. Chem. 2000; 43: 457
  • 5 Rawson TE, Ruth M, Blackwood E, Burdick D, Corson L, Dotson J, Drummond J, Fields C, Georges GJ, Goller B, Halladay J, Hunsaker T, Kleinheinz T, Krell H, Li J, Liang J, Limberg A, McNutt A, Moffat J, Phillips G, Ran Y, Safina B, Ultsch M, Walker L, Wiesmann Ch, Zhang B, Zhou A, Zhu B, Ruger P, Cochran AG. J. Med. Chem. 2008; 51: 4465
  • 6 Wua Z, Li Y, Cai Y, Yuan Y, Yuan Ch. Bioorg. Med. Chem. Lett. 2013; 23: 4903
  • 7 Fink DM, Palermo MG, Bores GM, Huger FP, Kurys BE, Merriman MC, Olsen GE, Petko W, O’Malley GJ. Bioorg. Med. Chem. Lett. 1996; 6: 625
  • 8 Ruiz M, López-Alvarado P, Menéndez JC. Eur. J. Org. Chem. 2013; 2802
    • 9a Teranishi K, Hayashi S, Nakatsuka S, Goto T. Synthesis 1995; 506
    • 9b Moldvai I, Gács-Baitz E, Temesvári-Major E, Incze M, Poppe L, Szántay C. Heterocycles 2004; 64: 153
    • 10a Huanga X, Chan Ch, Wu Q. Synth. React. Inorg. Met.-Org. Chem. 1982; 12: 549
    • 10b Haslego ML, Smith FX. Synth. Commun. 1980; 10: 421
    • 10c Wilsily A, Fillion E. J. Org. Chem. 2009; 74: 8583
    • 10d Dumas AM, Fillion E. Org. Lett. 2009; 11: 1919
    • 11a Huanga X, Chan Ch, Wu Q. Tetrahedron Lett. 1982; 23: 75
    • 11b Choi Y, Baek DJ, Seo HS, Lee JK, Pae AN, Cho YS, Min SJ. Bioorg. Med. Chem. Lett. 2011; 21: 215
    • 12a Mahoney SJ, Lou T, Bondarenko G, Fillion E. Org. Lett. 2012; 14: 3474
    • 12b Wilsily A, Nguyen Y, Fillion E. J. Am. Chem. Soc. 2009; 131: 15606
    • 13a Boisbrun M, Kovacs-Kulyassa A, Jeannin L, Sapi J, Toupet L, Laronze J. Tetrahedron Lett. 2000; 41: 9771
    • 13b Boisbrun M, Jeannin L, Toupet L, Laronze J. Eur. J. Org. Chem. 2000; 17: 3051
    • 13c Nemes C, Jeannin L, Sapi J, Laronze M, Seghir H, Auge F, Laronze J. Tetrahedron 2000; 56: 5479
    • 13d Jeannin L, Nagy Y, Vassileva E, Sapi J, Laronze J. Tetrahedron Lett. 1995; 36: 2057
    • 13e Armstrong EL, Grover HK, Kerr MA. J. Org. Chem. 2013; 78: 10534
  • 14 Li J, Yue C, Chen P, Xiao Y, Chen Y. Angew. Chem. Int. Ed. 2014; 53: 5449
    • 15a Allen JC, Kociok-Kohn G, Frost ChG. Org. Biomol. Chem. 2012; 10: 32
    • 15b Berionni G, Maji B, Knochel P, Mayr H. Chem. Sci. 2012; 3: 878
    • 16a Bigi F, Carloni S, Ferrari L, Maggi R, Mazzacani A, Sartori G. Tetrahedron Lett. 2001; 42: 5203
    • 16b Dumas AM, Seed A, Zorzitto AK, Fillion E. Tetrahedron Lett. 2007; 48: 7072
    • 16c Hedge JA, Krause CW, Snyder HR. J. Org. Chem. 1961; 26: 3166
    • 17a Zhuo M, Jiang Y, Fan Y, Gao Y, Liu S, Zhang S. Org. Lett. 2014; 16: 1096
    • 17b Guo Q, Peng Y, Zhang J, Song L, Feng Z, Gong L. Org. Lett. 2009; 11: 4620
    • 17c Yamamoto Y, Kawanishia E, Koga Y, Sakamakia S, Sakamotoa Y, Uetab K, Matsushitab Y, Kuriyamab Ch, Tsuda-Tsukimotoc M, Nomuraa S. Bioorg. Med. Chem. Lett. 2013; 23: 5641
    • 18a Pałasz A, Jelska K, Ożóg M, Serda P. Monatsh. Chem. 2007; 138: 481
    • 18b Sandhu HS, Sapra S, Gupta M, Nepali K, Gautam R, Yadav S, Kumar R, Jachak S, Chugh M, Gupta MK, Suri O, Dhar KL. Bioorg. Med. Chem. 2010; 18: 5626
    • 18c Thirupathi G, Venkatanarayana M, Dubey PK, Kumari YB. Org. Chem. Int. 2012; Article ID 191584
    • 18d Akue-Gedu R, El-Hafidi H, Rigo B. J. Heterocycl. Chem. 2006; 43: 365
    • 18e Kaupp G, Naimi-Jamal MR, Schmeyers J. Tetrahedron 2003; 59: 3753
    • 18f Kaumanns O, Mayr H. J. Org. Chem. 2008; 73: 2738
  • 19 Oikawa Y, Hirasawa H, Yonemitsu O. Tetrahedron Lett. 1978; 20: 1759