Synlett 2016; 27(12): 1888-1892
DOI: 10.1055/s-0035-1561610
letter
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Functionalized Pyrido[2,3-c]coumarin Derivatives by a One-Pot Three-Component Reaction

Zhiwei Chen*
a   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: e-mail_chenzhiwei@zjut.edu.cn
,
Lele Hu
a   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: e-mail_chenzhiwei@zjut.edu.cn
,
Fei Peng
a   National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
b   Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: e-mail_chenzhiwei@zjut.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 30 December 2015

Accepted after revision: 20 March 2016

Publication Date:
18 April 2016 (online)


Abstract

A methanesulfonic acid promoted three-component reaction has been developed for the synthesis of functionalized pyrido[2,3-c]coumarin derivatives from ketones, aromatic aldehydes, and 3-aminocoumarin. In this simple and efficient protocol, products were obtained in moderate to good yields (28 examples). The reaction proceeds by an asynchronous [4+2] cycloaddition (inverse-electron-demand Diels–Alder reaction).

Supporting Information

 
  • References and Notes

    • 1a Murray RD. H. Nat. Prod. Rep. 1995; 12: 477
    • 1b Estévez-Braun A, González AG. Nat. Prod. Rep. 1997; 14: 465
    • 1c Vermeer C, Schurgers LJ. Hematol. Oncol. Clin. North Am. 2000; 14: 339
    • 1d Holbrook AM, Pereira JA, Labiris R, McDonald H, Douketis JD, Crowther M, Wells PS. Arch. Intern. Med. 2005; 165: 1095
    • 1e Isambert N, Lavilla R. Chem. Eur. J. 2008; 14: 8444
    • 1f Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
    • 2a Badran MM, Ismail MM, El-Hakeem A. Egypt. J. Pharm. Sci. 1992; 33: 1081
    • 2b El-Farargy AF. Egypt. J. Pharm. Sci. 1991; 32: 625
    • 2c Nofal ZM, El-Masry H, Fahmy HH, Sarhan I. Egypt. J. Pharm. Sci. 1997; 38: 1
    • 2d Nofal ZM, El-Zahar MI, Abd-El-Karim SS. Molecules 2000; 5: 99
    • 2e Vijaykumar PR, Reddy RV, Rao VR. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2003; 42: 1738
    • 2f Venugopala KN, Jayashree BS. Indian J. Heterocycl. Chem. 2003; 12: 307
    • 2g Vaccaro W, Yang BV, Kim S.-H, Huynh T, Tortolani DR, Leavitt K, Li W, Doweyko AM, Chen X.-T, Doweyko L. WO 2004009017, 2004
  • 3 Kulkarni YD, Srivastava D, Bishnoi A, Dua PR. J. Indian Chem. Soc. 1996; 73: 173
  • 4 Marcu MG, Schulte TW, Neckers L. J. Natl. Cancer Inst. 2000; 92: 242
  • 5 Melagraki G, Afantitis A, Igglessi-Markopoulou O, Detsi A, Koufaki M, Kontogiorgis C, Hadjipavlou-Litina DJ. Eur. J. Med. Chem. 2009; 44: 3020
  • 6 Kolotilo NV, Sinitsa AA, Rassukana YuV, Onys’ko PP. Zh. Obshch. Khim. 2006; 76: 1260 ; Chem. Abstr. 2006, 146, 316980
    • 7a Rodighiero G, Antonello C. Boll. Chim. Farm. 1958; 97: 592
    • 7b Irgolic KJ In Houben–Weyl . Klamann D. Thieme; Stuttgart: 1990. 4th ed., Vol. E12b, 150
    • 8a Hammond PR, Atkins RL. J. Heterocycl. Chem. 1978; 12: 1061
    • 8b Atkins RL, Bliss DE. J. Org. Chem. 1978; 43: 1975
    • 8c Grandberg II, Denisov LK, Popova OA. Khim. Geterotsikl. Soedin. 1987; 2: 147
  • 9 Fujimoto A, Sakurai A, Iwase E. Bull. Chem. Soc. Jpn. 1976; 49: 809
  • 10 Khan MA, Gremal AL. J. Heterocycl. Chem. 1977; 14: 1009
  • 11 Pavé G, Chalard P, Viaud-Massuard M.-C, Troin Y, Guillaumet G. Synlett 2003; 987
  • 12 Majumdar KC, Chattopadhyay B, Taher A. Synthesis 2007; 3647
    • 13a Kudale AA, Kendall J, Miller DO, Collins JL, Bodwell GJ. J. Org. Chem. 2008; 73: 8437
    • 13b Kudale AA, Miller DO, Dawe LN, Bodwell GJ. Org. Biomol. Chem. 2011; 9: 7196
    • 13c Khan AT, Das DK, Islam K, Das P. Tetrahedron Lett. 2012; 53: 6418
    • 13d Belala M, Das DK, Khan AT. Synthesis 2015; 47: 1109
    • 14a Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
    • 14b Sadjadi S, Heravi MM. Tetrahedron 2011; 67: 2707
    • 14c Wan J.-P, Liu Y.-Y. RSC Adv. 2012; 2: 9763
    • 14d Isambert N, Lavilla R. Chem. Eur. J. 2008; 14: 8444
    • 14e Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
  • 15 Chen Z, Zhu Q, Su W. Tetrahedron Lett. 2011; 52: 2601
  • 16 Chen Z, Bi J, Su WK. Chin. J. Chem. 2013; 31: 507
  • 17 Chen Z. Yang X., Su W. 2015; 56: 2476
  • 18 Kudale AA, Kendall J, Warford CC, Wilkins ND, Bodwell GJ. Tetrahedron Lett. 2007; 48: 5077
    • 19a Gao Q, Liu S, Wu X, Zhang J, Wu A. J. Org. Chem. 2015; 80: 5984
    • 19b Pottie IR, Nandaluru PR, Benoit WL, Miller DO, Dawe LN, Bodwell GJ. J. Org. Chem. 2011; 76: 9015
    • 19c Dang AT, Miller DO, Dawe LN, Bodwell GJ. Org. Lett. 2008; 10: 233
  • 20 Pyrido[2,3-c]coumarins 4; General Procedure A dry 25 mL flask was charged with 3-aminocoumarin (1a; 1 mmol), aromatic aldehyde 2 (1 mmol), ketone 3 (1 mmol), MsOH (1 mmol), and MeCN (5 mL). The mixture was stirred at the reflux temperature for 2.5−8 h until the reaction was complete (TLC) and then cooled to r.t. The crystalline solids were collected and washed with a little cold MeCN to give the pure product. 3-(3-Chlorophenyl)-1-phenyl-5H-chromeno[3,4-b]pyridin-5-one (4f) Pale-yellow powder; yield: 329 mg (86%); mp 241–243 °C; 1H NMR (400 MHz, CDCl3): δ = 8.16 (s, 1 H), 8.09–8.06 (m, 1 H), 7.90 (s, 1 H), 7.57–7.55 (m, 3 H), 7.45–7.38 (m, 4 H), 7.36–7.33 (m, 2 H), 7.04 (d, J = 8.0 Hz, 1 H), 6.89–6.85 (m, 1 H); 13C NMR (100 MHz, CDCl3): δ = 158.9, 155.9, 151.0, 149.3, 139.6, 139.4, 138.9, 135.2, 130.8, 130.3, 129.8, 129.4, 128.9, 128.3, 127.9, 127.7, 127.5, 125.6, 123.9, 117.9, 117.2. HRMS-ESI: m/z [M + H]+ calcd for C24H15ClNO2: 384.0786; found: 384.0794. 3-(1-Naphthyl)-1-phenyl-5H-chromeno[3,4-b]pyridin-5-one (4l) Pale-yellow powder; yield: 331 mg (83%); mp 237–239 °C. 1H NMR (400 MHz, CDCl3): δ = 8.24–8.23 (m, 1 H), 7.94–7.91 (m, 2 H), 7.84 (s, 1 H), 7.78–7.77 (m, 1 H), 7.53–7.46 (m, 8 H), 7.39 (d, J = 8.0 Hz, 2 H). 7.11 (d, J = 8.0 Hz, 1 H) 6.92 – 6.88 (m, 1 H), 13C NMR (100 MHz, CDCl3): δ = 159.4, 158.6, 150.8 , 148.2, 139.2, 139.1, 136.1, 133.7, 131.9, 130.8, 130.3, 129.7, 129.3, 128.9, 128.3, 128.2, 128.0, 127.6, 126.8, 125.9, 125.0, 124.9, 123.5, 117.6, 116.9. HRMS-ESI: m/z [M + H]+ calcd for C28H18NO2: 400.1332; found: 400.1327. 3-Phenyl-1-(4-tolyl)-5H-chromeno[3,4-b]pyridin-5-one (4m) Pale-yellow powder; yield: 283 mg (78%); mp 208–210 °C. 1H NMR (400 MHz,CDCl3): δ = 8.18–8.15 (m, 2 H), 7.90 (s, 1 H), 7.49–7.41 (m, 3 H), 7.35–7.29 (m, 6 H), 7.11 (d, J = 8.0 Hz, 1 H) 6.90–6.86 (m, 1 H), 2.49 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.7, 157.1, 150.7, 148.8, 139.0, 138.9, 136.9, 136.6, 130.0, 129.9, 129.9, 128.6, 128.1, 127.9, 127.5, 127.4, 127.1, 123.4, 117.5, 117.1, 21.4. HRMS-ESI: m/z [M + H]+ calcd for C25H18NO2: 364.1332; found: 364.1316. 1-(4-Fluorophenyl)-3-phenyl-5H-chromeno[3,4-b]pyridin-5-one (4p) White powder; yield: 315 mg (86%); mp 278–280 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.31–8.29 (m, 2 H), 8.22 (s, 1 H), 7.63–7.59 (m, 2 H), 7.57–7.51 (m, 3 H), 7.46–7.40 (m, 4 H), 7.02–6.94 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 164.2, 161.8, 158.6, 157.4, 150.8, 147.6, 139.2, 136.9, 135.6, 130.4, 130.1, 130.0, 128.8, 128.0, 127.4, 127.3, 127.2, 123.6, 117.8, 116.9, 116.7, 116.5. HRMS-ESI: m/z [M + H]+ calcd for C24H15FNO2: 368.1081; found: 368.1065. 8-Phenyl-9,10,11,12-tetrahydro-6H-chromeno[3,4-c]isoquinolin-6-one (4v) Pale-yellow powder; yield: 277 mg (85%); mp 217–219 °C. 1H NMR (400 MHz, CDCl3): δ = 8.25 (d, J = 8.4 Hz, 1 H), 7.52–7.32 (m, 8 H), 3.36 (s, 2 H), 2.85 (s, 2 H), 1.88 (s, 4 H). 13C NMR (100 MHz, CDCl3): δ = 160.6, 159.1, 150.7, 144.9, 139.3, 137.0, 135.7, 129.8, 129.6, 128.8, 128.1, 128.0, 127.8, 123.7, 118.0, 117.8, 31.7, 28.9, 22.5, 21.6. HRMS-ESI: m/z [M + H]+ calcd for ­C22H18NO2: 328.1332; found: 328.1323. 2-Methyl-1,3-diphenyl-5H-chromeno[3,4-b]pyridin-5-one (4x) Pale-yellow powder; yield: 268 mg (74%); mp 228–230 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.68–7.50 (m, 8 H), 7.40–7.35 (m, 4 H), 6.86–6.83 (m, 1 H), 6.63–6.61 (m, 1 H), 2.09 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.8, 158.9, 150.9, 147.8, 139.3, 138.6, 136.2, 129.9, 129.2, 128.6, 128.5, 128.1, 127.3, 123.5, 117.6, 117.3, 19.3. HRMS-ESI: m/z [M + H]+ calcd for C25H18NO2: 364.1332; found: 364.1315.