Synlett 2016; 27(14): 2133-2139
DOI: 10.1055/s-0035-1561475
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis, Structure, and Properties of Quinone Methides Incorporating Thiophene and Bithiophene Derivatives: New Overcrowded Extended Quinonoid π-Systems

Hiroyuki Kurata*
a   Department of Environmental and Food Science, Faculty of Environmental and Information Science, Fukui University of Technology, Gakuen 3-6-1, Fukui 911-8505, Japan   Email: kurata@fukui-ut.ac.jp
,
Taihei Inoue
b   Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
Takeshi Suzuki
b   Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
Yasukazu Hirao
b   Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
,
Kouzou Matsumoto
c   Institute of Natural Sciences, Senshu University, Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8580, Japan
,
Takashi Kubo
b   Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
› Author Affiliations
Further Information

Publication History

Received: 15 April 2016

Accepted after revision: 15 May 2016

Publication Date:
22 June 2016 (online)


Abstract

The title compounds were synthesized through multiple Suzuki–Miyaura couplings followed by oxidation, and their structures and properties are described. They show large conformational changes and three color change upon electronic reduction.

Supporting Information

 
  • References and Notes

    • 1a Wagner H.-U, Gompper R In Chemistry of Quinonoid Compound . Patai S. Wiley; London: 1974. 114
    • 1b Boldt P In Chemistry of Quinonoid Compound . Patai S. Wiley; Chichester: 1988. Part 2, Vol. 2, 1419
    • 1c Zhou J, Rieker A. J. Chem. Soc., Perkin Trans. 2 1997; 931
    • 1d Zhou J, Felderhoff M, Smelkovae N, Gornastaev LM, Rieker A. J. Chem. Soc., Perkin Trans. 2 1998; 343
  • 4 Sugimoto T, Nagatomi T, Ando H, Yoshida Z. Angew. Chem., Int. Ed. Engl. 1988; 27: 560
  • 5 Experimental details of syntheses of 36 are provided in the Supporting Information.
  • 6 Dang TT, Rasool N, Reinkea H, Langer P. Tetrahedron Lett. 2007; 48: 845
  • 7 Tetrakis(4-hydroxy-3,5-di-tert-butylphenyl)thiophene (5) Colorless crystals; mp 206–207 °C (decomp.). 1H NMR (400 MHz, CDCl3): δ = 7.09 (s, 4 H), 6.66 (s, 4 H), 5.08 (s, 2 H), 4.92 (s, 2 H), 1.28 (s, 36 H), 1.18 (s, 36 H). 13C NMR (75 MHz, CDCl3): δ = 152.76, 151.83, 139.99, 137.14, 135.40, 135.14, 128.51, 127.61, 126.18, 125.94, 34.20, 34.06, 30.36, 30.20. MS (MALDI): m/z = 901.0 [M+], 902.0 [M + 1]+. IR (KBr): ν = 3644 (s), 2957 (s), 2915 (m), 2872 (m), 1433 (s), 1391 (w), 1361 (m), 1313 (m), 1234 (s), 1205 (w), 1156 (s), 1120 (m), 887 (m), 768 (m) cm−1. UV-vis (CH2Cl2): λmax (log ε) = 332 (4.17), 284 (4.30), 246 (4.43), 228 (4.55) nm. Anal. Calcd for C60H84O4S: C, 79.95; H, 9.39. Found: C, 79.75; H, 9.57. Tetrakis(4-oxo-3,5-di-tert-butylcyclohexa-2,5-dien-1-ylidene)tetrahydrothiophene (3) Dark-purple crystals; mp 246–248 °C (decomp.). 1H NMR (400 MHz, CDCl3): δ = 7.20 (d, J = 2.4 Hz, 2 H), 7.20 (d, J = 2.4 Hz, 2 H), 7.13 (d, J = 2.4 Hz), 7.12 (d, J = 2.4 Hz, 2 H), 1.37 (s, 18 H), 1.25 (s, 18 H), 1.24 (s, 18 H), 1.23 (s, 18 H). 13C NMR (100 MHz, CDCl3): δ = 186.42, 185.82, 151.16, 151.14, 150.24, 147.59, 140.75, 140.58, 129.44, 129.25, 128.53, 128.01, 127.75, 127.12, 35.86, 35.83, 35.77, 35.33, 29.54, 29.43, 29.32. MS (MALDI): m/z = 896.9 [M+]. IR(KBr) ν = 3003 (w), 2960 (s), 2869 (m), 1625 (s), 1614 (s), 1518 (m), 1485 (w), 1458 (m), 1388 (m), 1362 (s), 1334 (m), 1256 (m), 1124 (m), 1098 (w), 1087 (w), 1028 (w), 930 (w), 904 (m), 880 (w), 849 (m), 820 (w), 798 (w), 744 (w), 695 (w), 664 (w), 650 (w), 531 (w) cm−1. UV-vis (CH2Cl2): λmax (log ε) = 585 (3.58), 456 (4.76), 359 (4.67), 315 (4.45), 259 (4.21) nm. Anal. Calcd for C60H80O4S: C, 80.31; H, 8.99. Found: C, 79.93; H, 9.04. Hexakis(4-oxo-3,5-di-tert-butylcyclohexa-2,5-dien-1-ylidene)hexahydro-2,2′-bithiophene (4) Green powder; mp 189–191 °C (decomp.). 1H NMR (400 MHz, CDCl3): δ = 7.36 (d, J = 2.7 Hz, 2 H), 7.18 (d, J = 2.4 Hz, 2 H), 7.14 (d, J = 2.4 Hz, 2 H), 7.12 (d, J = 2.7 Hz, 2 H), 7.07 (d, J = 2.7 Hz, 2 H), 7.04 (d, J = 2.4 Hz, 2 H), 1.32 (s, 18 H), 1.30 (s, 18 H) 1.28 (s, 18 H), 1.27 (s, 18 H), 1.22 (s, 18 H), 1.21 (s, 18 H). IR (KBr) ν = 3002 (w), 2959 (s), 2870 (w), 1625 (s), 1519 (w), 1485 (m), 1458 (m), 1389 (m), 1363 (s), 1334 (m), 1254 (m), 1127 (m), 1093 (w), 930 (w), 904 (m), 879 (w) cm−1. UV-vis (CH2Cl2): λmax (log ε) = 594 (4.96), 362 (4.20), 308 (3.98), 280 (4.09), 228 (4.41) nm. ESI-HRMS: m/z calcd for C92H121O6S2: 1385.8599 [M + H]+; found: 1385.8530 (because of low solubility of 4, 13C NMR spectra were unmeasurable).
  • 8 Isobe Y, Tobe M, Takahashi O, Goto Y, Inoue Y, Obara F, Tsuchiya M, Hayashi H. Chem. Pharm. Bull. 2002; 50: 1418
  • 9 Hopf H In Classics in Hydrocarbon Chemistry: Synthesis, Concepts, Perspectives. Wiley-VCH; New York: 2000: 251
  • 10 The DFT calculations were performed at the B3LYP/6-31G* level using Gaussian 03 program. M. J. Frisch et al.; Gaussian 03 (Revision D.01). Gaussian Inc; Wallingford, CT: 2004
  • 11 Crystallographic Data C60H80O4S, M = 897.35, tetragonal, space group I-4c2 (No.120), a = 19.3239(7) Å, c = 29.570(2) Å, V = 11041.8(8) Å3, Z = 8, D calc = 1.080 g cm–3, F 000 = 3904.00, μ = 1.015 cm–1 (MoKα; λ = 0.71075 Å), 52741 reflections measured, 6340 unique, reflection/parameter ratio = 21.56, R1 = 0.0498 for I> 2σ(I), wR2 = 0.1488 for all data, GOF = 0.878. CCDC 1473992 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 12 Details of crystallographic data, bond lengths, bond angles and torsion angles of 3 are provided in the Supporting Information.
  • 13 Each structure of anionic species in Scheme 3 and 4 is represented as the most contributory structure; the radical should be delocalized.
  • 14 There is no other spectroscopic evidence for formation of 44− , but it is the most reasonable species judging from such a long-wavelength absorption which is typical for bithiophene-inserted quinoidal structure (ref. 2a) and the cyclic voltammogram of 4.