Synlett 2016; 27(10): 1572-1576
DOI: 10.1055/s-0035-1561396
letter
© Georg Thieme Verlag Stuttgart · New York

Piperazine as Leaving Group in A3 Adducts: Fast Access to Alkynyl Indoles

Mansour Dolè Kerim
Laboratoire LSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
,
Laurent El Kaïm*
Laboratoire LSO ENSTA-Polytechnique-CNRS, UMR 7652, Ecole Nationale Supérieure de Techniques Avancées, 828 Bd des Maréchaux, Palaiseau, France   Email: laurent.elkaim@ensta-paristech.fr
› Author Affiliations
Further Information

Publication History

Received: 22 January 2016

Accepted: 04 February 2016

Publication Date:
30 March 2016 (online)


Abstract

The A3 coupling between N-ethylpiperazine and electron-rich aromatic aldehydes forms adducts that may be easily used as electrophiles towards electron-rich heterocycles such as indoles. The removal of the piperazine moiety is triggered by the addition of 1,2-dibromoethane. Overall, the reaction provides efficient access to alkynyl indoles and pyrroles.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 1b Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. Eur. J. 2000; 6: 3321
    • 1c Ugi I, Werner B, Dömling A. Molecules 2003; 8: 53
    • 1d Dömling A. Curr. Opin. Chem. Biol. 2002; 6: 306
    • 1e Multicomponent Reactions . Zhu J, Bienaymé H. Wiley-VCH; Weinheim: 2005
    • 1f Dömling A. Chem. Rev. 2006; 106: 17
    • 1g Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M. Wiley-VCH; Weinheim: 2014
    • 2a Atlan V, Bienaymé H, El Kaim L, Majee A. Chem. Commun. (Cambridge) 2000; 1585
    • 2b Atlan V, El Kaim L, Grimaud L, Jana NK, Majee A. Synlett 2002; 352
  • 3 El Kaim L, Grimaud L, Oble J. Org. Biomol. Chem. 2006; 4: 3410
    • 4a Sundberg RJ. Indoles . Academic Press; San Diego: 1996
    • 4b Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970

      For a selection of propargylations from hydroxy and protected hydroxy propargylic derivatives, see:
    • 5a Ishikawa T, Okano M, Aikawa T, Saito S. J. Org. Chem. 2001; 66: 4635
    • 5b Jana U, Maiti S, Biswas S. Tetrahedron Lett. 2007; 48: 7160
    • 5c Nishibayashi Y, Yoshikawa M, Inada Y, Hidai M, Uemura S. J. Am. Chem. Soc. 2002; 124: 11846
    • 5d Kennedy-Smith JJ, Young LA, Toste FD. Org. Lett. 2004; 6: 1325
    • 5e Georgy M, Boucard V, Campagne J.-M. J. Am. Chem. Soc. 2005; 127: 14180
    • 5f Liu J, Muth E, Flörke U, Henkel G, Merz K, Sauvageau J, Schwake E, Dyker G. Adv. Synth. Catal. 2006; 348: 456
    • 5g Zhan Z, Yu J, Liu H, Cui Y, Yang R, Yang W, Li J. J. Org. Chem. 2006; 71: 8298
    • 5h Zhan Z.-P, Liu H.-J. Synlett 2006; 2278
    • 5i Qin H, Yamagiwa N, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2007; 46: 409
    • 5j Liu Z, Liu L, Shafiq Z, Wu Y.-C, Wang D, Chen Y.-J. Tetrahedron Lett. 2007; 48: 3963
    • 6a Yang C.-F, Wang J.-Y, Tian S.-K. Chem. Commun. (Cambridge) 2011; 47: 8343
    • 6b Liu C, Yang F, Wang T. Chin. J. Chem. 2014; 32: 387
  • 7 Shang Y, Hu X, He X, Tao J, Han G, Wu F, Wang J. J. Org. Chem. 2015; 80: 4760
  • 8 Synthesis of 1a; Typical Procedure: To a stirred solution of 4-methoxybenzaldehyde (5 mmol, 0.6 mL), N-ethylpiperazine (1 equiv, 5 mmol, 0.64 mL), and 1-hexyne (2 equiv, 10 mmol, 1.16 mL) in toluene (1 mL, 5 M) was added CuI (0.1 equiv, 95 mg) and the mixture was heated at 130 °C under microwave irradiation for 60 min. Purification by flash chromatography (EtOAc–EtOH) gave 1a (1.09 g, 69%) as a yellow oil. Rf = 0.16 (EtOAc–EtOH, 90:10). FTIR: 2930, 2872, 2809, 1508, 1158, 1145, 1002, 834 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.44 (d, J = 8.6 Hz, 2 H), 6.85 (d, J = 8.6 Hz, 2 H), 4.49 (s, 1 H), 3.80 (s, 3 H), 2.57 (br s, 8 H), 2.4 (q, J = 7.2 Hz, 2 H), 2.27 (td, J = 7.1, 2 Hz, 2 H), 1.53 (m, 2 H), 1.41 (m, 2 H), 1.07 (t, J = 7.2 Hz, 3 H), 0.91 (t, J = 7.3 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 159.0, 131.0, 129.8, 113.4, 88.2, 76.1, 60.8, 55.3, 53.1, 52.5, 31.2, 22.2, 18.7, 13.8, 12.1. HRMS (ESI+/TOF): m/z calcd for C20H30N2O: 314.2358; found: 314.2365. Synthesis of 3a; Typical Procedure: To a solution of 1a (1.2 equiv, 0.36 mmol, 113 mg) in acetonitrile (1.5 mL), was added 1,2-dibromoethane (1.5 equiv, 0.45 mmol, 0.04 mL) and N-methylindole 2a (1 equiv, 0.3 mmol, 0.04 mL). Purification by flash chromatography (petroleum ether–Et2O) gave 3a (73 mg, 73%) as a brownish oil. Rf = 0.34 (petroleum ether–Et2O, 90:10). FTIR: 2953, 2929, 1607, 1507, 1462, 1243, 1172, 1012, 879, 841 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.56 (d, J = 8.0 Hz, 1 H), 7.39 (d, J = 8.5 Hz, 2 H), 7.28 (d, J = 8.2 Hz, 1 H), 7.21 (m, 1 H), 7.05 (m, 1 H), 6.90 (s,1 H), 6.85 (d, J = 8.5 Hz, 2 H), 5.18 (s, 1 H), 3.79 (s, 3 H), 3.74 (s, 3 H), 2.28 (td, J = 7.0, 2.3 Hz, 2 H), 1.55 (m, 2 H), 1.46 (m, 2 H), 0.93 (t, J = 7.2 Hz, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 158.3, 137.6, 134.5, 128.9, 127.1, 126.6, 121.7, 119.9, 119.0, 116.6, 113.8, 109.3, 83.2, 81.2, 55.4, 34.1, 32.8, 31.3, 22.2, 18.8, 13.8. HRMS (ESI+/TOF): m/z calcd for C23H25NO: 331.1936; found: 331.2296.