Synlett 2016; 27(09): 1391-1396
DOI: 10.1055/s-0035-1561393
letter
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Cyclization of Electron-Enriched Phenyl Benzyl Sulfides: Synthesis of Tetrahydrofurans and Tetrahydropyrans

Wei Li
a   State Key Laboratory of Urban Water Resource and Environment, Shenzhen Graduate School. Harbin Institute of Technology, Harbin 150080, P. R. of China   Email: xiawj@hit.edu.cn
b   Key Laboratory for Food Science and Engineering. Harbin University of Commerce, Harbin 150076, P. R. of China
,
Chao Yang
a   State Key Laboratory of Urban Water Resource and Environment, Shenzhen Graduate School. Harbin Institute of Technology, Harbin 150080, P. R. of China   Email: xiawj@hit.edu.cn
,
Guo-Lin Gao
a   State Key Laboratory of Urban Water Resource and Environment, Shenzhen Graduate School. Harbin Institute of Technology, Harbin 150080, P. R. of China   Email: xiawj@hit.edu.cn
,
Wujiong Xia*
a   State Key Laboratory of Urban Water Resource and Environment, Shenzhen Graduate School. Harbin Institute of Technology, Harbin 150080, P. R. of China   Email: xiawj@hit.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 28 November 2015

Accepted after revision: 23 January 2016

Publication Date:
04 March 2016 (online)


Abstract

A new approach to the preparation of tetrahydrofurans and tetrahydropyrans through a photoredox catalytic process is described. The introduction of a phenylsulfanyl auxiliary group permits the substrates to be readily oxidized to form cationic intermediates for sequential intramolecular cyclization. The method features mild reaction conditions and operational simplicity.

Supporting Information

 
  • References and Notes

    • 1a Faul MM, Huff BE. Chem. Rev. 2000; 100: 2407
    • 1b Alvarez E, Candenas M.-L, Perez R, Ravelo JL, Delgado Martin J. Chem. Rev. 1995; 95: 1953

      For selected examples of syntheses of furans from diols, see:
    • 2a Zhao S, Wu Y. Sun Q., Cheng T.-M., Li R.-T. 2015; 47: 1154
    • 2b Bunrit A, Dahlstrand C, Olsson SK, Srifa P, Huang G, Orthaber A, Sjöberg PJ, Biswas S, Himo F, Samec JS. J. Am. Chem. Soc. 2015; 137: 4646
    • 2c He R, Jin X, Chen H, Huang Z.-T, Zheng Q.-Y, Wang C. J. Am. Chem. Soc. 2014; 136: 6558
    • 2d Zheng H, Ghanbari S, Nakamura S, Hall DG. Angew. Chem. Int. Ed. 2012; 51: 6187
    • 2e Jiang X, London EK, Morris DJ, Clarkson GJ, Wills M. Tetrahedron 2010; 66: 9828
    • 2f Teduka T, Togo H. Synlett 2005; 923

      For selected examples of syntheses of furans from alkanols, see:
    • 3a Temperini A, Barattucci A, Bonaccorsi PM, Rosati O, Minuti L. J. Org. Chem. 2015; 80: 8102
    • 3b Minuti L, Barattucci A, Bonaccorsi M, Di Gioia ML, Leggio A, Siciliano C, Temperini A. Org. Lett. 2013; 15: 3906
    • 3c Baciocchi E, Bietti M, Manduchi L, Steenken S. J. Am. Chem. Soc. 1999; 121: 6624
    • 3d Harwood LM, Robertson J. Tetrahedron Lett. 1987; 28: 5175
    • 3e Taylor EC, Andrade JG, Rall GJ, Turchi IJ, Steliou K, Jagdmann GE. Jr, McKillop A. J. Am. Chem. Soc. 1981; 103: 6856

      For selected examples of syntheses of furans from alkenols, see:
    • 4a Zeng X, Miao C, Wang S, Xia C, Sun W. Chem. Commun. 2013; 49: 2418
    • 4b Zhu C, Falck JR. Angew. Chem. Int. Ed. 2011; 50: 6626
    • 4c Protti S, Dondi D, Fagnoni M, Albini A. Eur. J. Org. Chem. 2008; 2240
    • 4d Uehlin L, Wirth T. Org. Lett. 2001; 3: 2931
    • 4e Tamaru Y, Hojo M, Higashimura H, Yoshida Z.-I. Angew. Chem. Int. Ed. 1986; 25: 735

      For selected examples of syntheses of furans from tetrahydrofurans, see:
    • 5a Gartia Y, Ramidi P, Jones DE, Pulla S, Ghosh A. Catal. Lett. 2014; 144: 507
    • 5b Wan M, Meng Z, Lou H, Liu L. Angew. Chem. Int. Ed. 2014; 53: 13845
    • 5c Gartia Y, Ramidi P, Cheerla S, Felton CM, Jones DE, Das BC, Ghosh A. J. Mol. Catal. A: Chem. 2014; 392: 253
    • 5d Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
    • 5e Singh PP, Gudup S, Aruri H, Singh U, Ambala S, Yadav M, Sawant SD, Vishwakarma RA. Org. Biomol. Chem. 2012; 10: 1587
    • 5f Singh PP, Gudup S, Ambala S, Singh U, Dadhwal S, Singh B, Sawant SD, Vishwakarma RA. Chem. Commun. 2011; 47: 5852
    • 6a Chu L, Lipshultz JM, MacMillan DW. Angew. Chem. Int. Ed. 2015; 54: 7929
    • 6b Gu L, Jin C, Liu J. Green Chem. 2015; 17: 3733
    • 6c Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
    • 6d Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 6e Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 6f Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 6g Shi L, Xia WJ. Chem. Soc. Rev. 2012; 41: 7687
    • 6h Xuan J, Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 6i Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 7a Lin R, Sun H, Yang C, Shen W, Xia W. Chem. Commun. 2015; 51: 399
    • 7b Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
    • 8a Zheng L, Yang C, Xu Z, Gao F, Xia W. J. Org. Chem. 2015; 80: 5730
    • 8b Lin R, Sun H, Yang C, Yang Y, Zhao X, Xia W. Beilstein J. Org. Chem. 2015; 11: 31
    • 8c Huang H.-L, Yan H, Yang C, Xia W. Chem. Commun. 2015; 51: 4910
    • 8d Shao YT, Li Z, Yang C, Lin R, Xia W. Beilstein J. Org. Chem. 2014; 10: 622
    • 8e Sun H, Yang C, Gao F, Li Z, Xia W. Org. Lett. 2013; 15: 624
    • 8f Guo L, Yang C, Zheng L, Xia W. Org. Biomol. Chem. 2013; 11: 5787
    • 9a Francke R. Beilstein J. Org. Chem. 2014; 10: 2858
    • 9b Matsumoto K, Kozuki Y, Ashikari Y, Suga S, Kashimura S, Yoshida J.-i. Tetrahedron Lett. 2012; 53: 1916
    • 9c Matsumoto K, Ueoka K, Suzuki S, Suga S, Yoshida J.-i. Tetrahedron 2009; 65: 10901
    • 9d Matsumoto K, Fujie S, Ueoka K, Suga S, Yoshida J.-i. Angew. Chem. Int. Ed. 2008; 47: 2506
    • 10a Xuan J, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2014; 20: 3045
    • 10b Deng G.-B, Wang Z.-Q, Xia J.-D, Qian P.-C, Song R.-J, Hu M, Gong L.-B, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
    • 10c Yang D.-T, Meng Q.-Y, Zhong J.-J, Xiang M, Liu Q, Wu L.-Z. Eur. J. Org. Chem. 2013; 7528
    • 10d Liu Q, Han B, Liu Z, Yang L, Liu Z.-L, Yu W. Tetrahedron Lett. 2006; 47: 1805
    • 11a Wever WJ, Cinelli MA, Bowers AA. Org. Lett. 2013; 15: 30
    • 11b Nakanishi M, Takahashi D, Toshima K. Org. Biomol. Chem. 2013; 11: 5079
  • 12 The crystalline material 2l was prepared by a layer-to-layer diffusion method. 2l was dissolved in THF and layered with hexane. After seven days, a crystal suitable for single-crystal X-ray diffraction was obtained. CCDC 1431990 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 13 tert-Butyl[4-(4-methoxyphenyl)-4-(phenylsulfanyl)butoxy]dimethylsilane (1a); Typical Procedure15 TMEDA (0.70 g, 6.0 mmol) was added to a 1.6 M solution n-BuLi in hexane (3.8 mL, 6.0 mmol) in THF (10 mL) at –30 °C, and the mixture was stirred for 0.5 h. A solution of 1-methoxy-4-[(phenylsulfanyl)methyl]benzene (1.150 g, 5.0 mmol) in THF (5 mL) was then added dropwise, and the mixture was stirred for a further 2 h. TBSO(CH2)3Br (1.25 g, 5.0 mmol) was added and reaction mixture was allowed to warm to 0 °C and stirred for 5 h. The reaction was quenched with aq NH4Cl (20 mL) and the mixture was extracted with Et2O (3 × 30 mL). The combined organic layers were washed with brine (60 mL), dried (MgSO4), and filtered. The solvent was removed in vacuo to afford a crude product that was purified by flash chromatography (silica gel) to give a colorless liquid; yield: 1450 mg (72%). 1H NMR (400 MHz, CDCl3): δ = 7.29–7.11 (m, 7 H), 6.79 (d, J = 7.8 Hz, 2 H), 4.11 (t, J = 6.2 Hz, 1 H), 3.77 (s, 3 H), 3.55 (t, J = 6.2 Hz, 2 H), 2.12–1.81 (m, 2 H), 1.58–1.37 (m, 2 H), 0.86 (s, 9 H), 0.00 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 158.51, 135.12, 133.89, 132.39, 128.82, 128.59, 126.90, 113.65, 62.60, 55.19, 52.67, 32.61, 30.68, 25.93, 18.28, –5.35. GC/MS (EI, QMS): m/z (%) = 402 (<1), 345, 293, 235, 161 (100), 73.
  • 14 Photocatalytic Cycloetherification of Phenyl Benzyl Sulfides; General Procedure A 10 mL round-bottomed flask equipped with a magnetic stirrer bar was charged with the appropriate phenyl benzyl sulfide 1 (0.1 mmol), TFA (0.15 mmol), Ru(bpy)3Cl2 (0.005 mmol), and anhyd MeNO2 (1 mL). The mixture was irradiated with a blue LED (6 W) at r.t. for 4 h. The mixture was the filtered through a short plug of silica gel that was rinsed with EtOAc. The filtrate was concentrated and the residue was purified by flash column chromatography. 2-(4-Methoxyphenyl)tetrahydrofuran (2a) Colorless liquid; yield: 15.1 mg (85%). 1H NMR (400 MHz, CDCl3) δ = 7.25 (d, J = 3.6 Hz, 2 H), 6.87 (d, J = 8.6 Hz, 2 H), 4.83 (t, J = 7.2 Hz, 1 H), 4.08 (dd, J = 14.7, 7.2 Hz, 1 H), 3.91 (dd, J = 14.3, 7.9 Hz, 1 H), 3.80 (s, 3 H), 2.36–2.20 (m, 1 H), 2.11–1.94 (m, 2 H), 1.85–1.71 (m, 1 H). 13C NMR (150 MHz, CDCl3): δ = 158.76, 135.30, 126.94, 113.65, 80.42, 68.47, 55.25, 34.45, 26.05. GC/MS (EI, QMS): m/z (%) = 178 (46), 177, 147, 136, 135 (100). HRMS (ESI); m/z [M + H]+ calcd. for C11H15O2: 179.1072; found: 179.1067. 2-(2-Methoxyphenyl)tetrahydrofuran(2b)5f Colorless liquid; yield: 13.0 mg (73%). 1H NMR (600 MHz, CDCl3) δ = 7.42 (d, J = 7.5 Hz, 1 H), 7.22 (t, J = 7.7 Hz, 1 H), 6.95 (t, J = 7.4 Hz, 1 H), 6.85 (d, J = 8.1 Hz, 1 H), 5.17 (t, J = 6.9 Hz, 1 H), 4.10 (dd, J = 14.1, 7.1 Hz, 1 H), 3.92 (dd, J = 14.2, 7.4 Hz, 1 H), 2.45–2.25 (m, 1 H), 2.02–1.86 (m, 2 H), 1.68–1.73 (m, 1 H). 13C NMR (150 MHz, CDCl3): δ = 156.09, 132.19, 127.73, 125.55, 120.38, 109.99, 75.86, 68.50, 55.22, 33.05, 25.87. GC/MS (EI, QMS): m/z (%) = 178 (83), 177, 147, 136, 135 (100), 119. HRMS (ESI); m/z [M + Na]+ calcd. for C11H14NaO2: 201.0891; found: 201.0881.
  • 15 Smith III AB, Tong R. Org. Lett. 2010; 12: 1260