Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(05): 731-735
DOI: 10.1055/s-0035-1561337
DOI: 10.1055/s-0035-1561337
cluster
Single-Electron-Transfer Oxidation of Trifluoroborates and Silicates with Organic Reagents: A Comparative Study
Further Information
Publication History
Received: 14 December 2015
Accepted after revision: 05 January 2016
Publication Date:
26 January 2016 (online)
Abstract
In this report, the single-electron-transfer oxidation of alkyl trifluoroborates and silicates has been studied. Different types of oxidation reagents have been examined, focusing on organic oxidants and particularly the use of dyes in photocatalytic oxidations. Both trifluoroborates and silicates could provide C-centered radicals when using a tritylium salt or the Ledwith–Weitz aminium salt. Photocatalysis with the Fukuzumi reagent suggested that trifluoroborates are more easily oxidized than biscatecholato silicates under these conditions.
Key words
radicals - dyes - photocatalysis - trifluoroborates - silicates - single-electron transfer - oxidationSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1561337.
- Supporting Information
-
References and Notes
- 1a Dalko PI. Tetrahedron 1995; 51: 7579
- 1b Jahn U. Radicals in Synthesis III. In Topics in Current Chemistry. Vol. 320. Heinrich M, Gansäuer A. Wiley-VCH; Weinheim: 2012: 121
- 1c Jahn U. Radicals in Synthesis III. In Topics in Current Chemistry. Vol. 320. Heinrich M, Gansäuer A. Wiley-VCH; Weinheim: 2012: 191
- 1d Jahn U. Radicals in Synthesis III. In Topics in Current Chemistry. Vol. 320. Heinrich M, Gansäuer A. Wiley-VCH; Weinheim: 2012: 323
- 1e Gansäuer A, Bluhm H. Chem. Rev. 2000; 100: 2771
- 2a Schuster GB. Pure Appl. Chem. 1990; 62: 1565
- 2b Shundrin LA, Bardin VV, Frohn H.-J. Z. Anorg. Allg. Chem. 2004; 630: 1253
- 2c Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
- 2d Lockner JW, Dixon DD, Risgaard R, Baran PS. Org. Lett. 2011; 13: 5628
- 2e Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Bel MD, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292
- 2f Liwosz TW, Chemler SR. Org. Lett. 2013; 15: 3034
- 2g Neufeldt SR, Seigerman CK, Sanford MS. Org. Lett. 2013; 15: 2302
- 2h Brown HC, Hébert NC, Snyder CH. J. Am. Chem. Soc. 1961; 83: 1001
- 2i Demir AS, Reis Ö, Emrullahoglu M. J. Org. Chem. 2003; 68: 578
- 2j Dickschat A, Studer A. Org. Lett. 2010; 12: 3972
- 2k Tobisu M, Koh K, Furukawa T, Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363
- 3a Corcé V, Chamoreau LM, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
- 3b Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138 in press; DOI: 10.1021/jacs.5b10963
- 4a Holmes RR. Chem. Rev. 1990; 90: 17
- 4b Chuit C, Corriu RJ. P, Reye C, Young JC. Chem. Rev. 1993; 93: 1371
- 5 Sorin G, Mallorquin RM, Contie Y, Baralle A, Malacria M, Goddard J-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
- 6a Nishigaichi Y, Orimi T, Takuwa A. J. Organomet. Chem. 2009; 694: 3837
- 6b Carzola C, Metay E, Andrioletti B, Lemaire M. Tetrahedron Lett. 2009; 50: 6855
- 7 For seminal work, see: Yoshida J.-I, Tamao K, Kakui T, Kurita A, Murata M, Yamada K, Kumada M. Organometallics 1982; 1: 369
- 8a Xie Z, Liu L, Chen W, Zheng H, Xu QH, Yuan H, Lou H. Angew. Chem. Int. Ed. 2014; 53: 3904 ; and references cited therein
- 8b Daniel M, Fensterbank L, Goddard J.-P, Ollivier C. Org. Chem. Front. 2014; 1: 551
- 9 To a Schlenk flask was added potassium 5-hexenyl-1-trifluoroborate (1d) or potassium [18-crown-6] bis(catecholato)-5-hexenyl-1-silicate (3d, 0.3 mmol, 1 equiv), the oxidizing agent (0.3 mmol, 1 equiv), and TEMPO (0.9 mmol, 141 mg, 3 equiv). The Schlenk flask was sealed with a rubber septum, and evacuated–purged with vacuum–argon three times. Degassed Et2O or DMF (3 mL) was introduced followed by two freeze–pump–thaw cycles. The reaction mixture was stirred at room temperature for 24 h under an argon atmosphere. The reaction mixture was diluted with Et2O (50 mL), washed with H2O or NaHCO3- (2×), brine (2×), dried over MgSO4, and evaporated under reduced pressure. The reaction residue was purified by flash column chromatography on silica gel to afford an inseparable mixture of 4d and 4d′ in a 9:1 to 10:1 ratio and an overall yield (37–61%) depending on the oxidizing agent. Compound 4d: 1H NMR (400 MHz, CDCl3): δ = 5.82 (m, 1 H), 5.01 (m, 1 H), 4.94 (m, 1 H), 3.73 (t, J = 6.1 Hz, 2 H), 2.07 (q, J = 7.2 Hz, 2 H), 1.55–1.20 (m, 10 H), 1.14 (s, 6 H), 1.09 (s, 6 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 139.1, 114.5, 80.8, 59.9, 59.8, 39.7, 34.0, 33.2, 28.4, 25.9, 20.3, 17.3 ppm. Compound 4d′: 1H NMR (400 MHz, CDCl3): characteristic signal at δ = 3.64 ppm (CH 2O). 13C NMR (100 MHz, CDCl3): characteristic signal at δ = 76.7 ppm (CH2O).
- 10a Herath AC, Becker JY. J. Electroanal. Chem. 2008; 619-620: 98
- 10b Brinkhaus KH. G, Steckhan E, Schmidt W. Acta Chem. Scand., Ser. B 1983; 37: 499
- 10c Wend R, Steckhan E. Electrochim. Acta 1983; 42: 2027
- 10d Drew SL, Lawrence AL, Sherburn MS. Angew. Chem. Int. Ed. 2013; 52: 4221
- 11 In comparison, oxidation with 1 equiv of Cu(OAc)2 gave 45% yield of 4a and with 1 equiv of DMP, 26% of 4a.
- 12a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
- 12b Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
- 12c Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
- 12d Narayanaman JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 12e Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
- 12f Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
- 12g Ischay MA, Yoon TP. Eur. J. Org. Chem. 2012; 3359
- 12h Maity S, Zheng N. Synlett 2012; 23: 1851
- 12i Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
- 12j Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
- 12k Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 12l Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 12m Reckenthäler M, Griesbeck AG. Adv. Synth. Catal. 2013; 355: 2727
- 12n Koike T, Akita M. Synlett 2013; 24: 2492
- 12o Xuan J, Lu L.-Q, Chen J.-R, Xiao W.-J. Eur. J. Org. Chem. 2013; 6755
- 12p Zou Y.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2013; 52: 11701
- 12q Hu J, Wang J, Nguyen TH, Zheng N. Beilstein J. Org. Chem. 2013; 9: 1977
- 12r Xie J, Jin H, Xu P, Zhu C. Tetrahedron Lett. 2014; 55: 36
- 12s Koike T, Akita M. Inorg. Chem. Front. 2014; 1: 562
- 12t Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 12u Schultz DM, Yoon TP. Science 2014; 343: 985
- 12v Chemical Photocatalysis. König B. DeGruyter; Berlin: 2013
- 12w Photochemically Generated Intermediates in Synthesis. Albini A, Fagnoni M. John Wiley and Sons; Hoboken: 2013
- 13a Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
- 13b Miyazawa K, Yasu Y, Koike T, Akita M. Chem. Commun. 2013; 49: 7249
- 13c Koike T, Akita M. Synlett 2013; 24: 2492
- 13d Miyazawa K, Koike T, Akita M. Adv. Synth. Catal. 2014; 356: 2749
- 13e Li Y, Miyazawa K, Koike T, Akita M. Org. Chem. Front. 2015; 2: 319
- 13f Huang H, Zhang G, Gong L, Zhang S, Chen Y. J. Am. Chem. Soc. 2014; 136: 2280
- 13g Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 13h Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
- 13i Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
- 13j Karakaya I, Primer DN, Molander GA. Org. Lett. 2015; 17: 3294
- 13k Yamashita Y, Tellis JC, Molander GA. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 12026
- 13l Huang H, Jia K, Chen Y. Angew. Chem. Int. Ed. 2015; 54: 1881
- 14 Allyl-, cyclopentyl-, t-BuSiF5K2 did not give any TEMPO adduct 4 in the following conditions {2 mol% Ir[(dF(CF3)ppy)2(bpy)](PF6), acetone or DMF, TEMPO (2.5 equiv), blue LED}.
- 15a Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
- 15b Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 15c Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
- 15d Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
- 16 Zhang X.-F, Zhang I, Liu L. Photochem. Photobiol. 2010; 86: 492
- 17a Fukuzumi S, Kotani H, Okhubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
- 17b Benniston AC, Harriman A, Li P, Rostron JP, van Ramesdonk HJ, Groeneveld MM, Zhang H, Verhoeven JW. J. Am. Chem. Soc. 2005; 127: 16054
- 18 To a Schlenk flask were added the organotrifluoroborate 1 or organosilicate 3 (0.3 mmol, 1 equiv), 9-mesityl-10-methylacridinium perchlorate as photocatalyst (0.03 mmol, 10 mol%), and TEMPO (0.66 mmol, 2.2 equiv.). The Schlenk flask was sealed with a rubber septum and evacuated–purged with vacuum–argon three times. Degassed DMF (3 mL) was introduced followed by two freeze–pump–thaw cycles. The reaction mixture was stirred under blue LEDs irradiation at room temperature for 24 h under an argon atmosphere. The reaction mixture was diluted with Et2O (50 mL), washed with sat. NaHCO3 (2×), brine (2×), dried over MgSO4, and evaporated under reduced pressure. The reaction residue was purified by flash column chromatography on silica gel.
- 19 The generated TEMPO N-oxide anion could be silylated or borylated. The resulting anionic products would be eliminated during the aqueous workup. We thank one of the referees for this suggestion.
For the oxidation of boronic acids, see
During the course of our investigation, the following complementary report appeared, see:
Tritylium is known as a hydride abstractor, for a recent application, see:
It has been used as a sacrificial electron acceptor in photoredox catalysis, see:
For a recent use, see:
(e) For a review, see: Jia, X. Synthesis 2016, 48, 18.
For selected reviews on visible-light photoredox catalysis, see:
For recent books, see:
For a recent use, see: