Synthesis 2016; 48(05): 723-729
DOI: 10.1055/s-0035-1561303
paper
© Georg Thieme Verlag Stuttgart · New York

An Efficient Synthesis of Optically Pure N δ-Monomethylated l-Arginine and l-Ornithine

Felix-A. Litty
a   Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
,
Ulrich Girreser
a   Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
,
Bernd Clement
a   Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University of Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
,
Dennis Schade*
b   TU Dortmund, Department of Chemistry & Chemical Biology, Otto-Hahn-Straße 6, 44227 Dortmund, Germany   Email: dennis.schade@tu-dortmund.de
› Author Affiliations
Further Information

Publication History

Received: 07 October 2015

Accepted after revision: 02 December 2015

Publication Date:
05 January 2016 (online)


Abstract

N ω-Methylated l-arginines such as asymmetric dimethyl-l-arginine (ADMA) and monomethyl-l-arginine (NMMA) are well-known endogenous modulators of the nitric oxide (NO) generating system. To understand the (patho)physiological role and impact of N δ-methylation of l-arginine and l-ornithine an efficient synthesis of the pure enantiomers was needed. A synthetic approach that furnished both the desired amino acids in 8–10 steps from commercially available N-Boc-l-ornithine in good overall yields (20–21%) and with high optical purity (>99% ee) is reported.

Supporting Information

 
  • References

  • 1 Bedford MT, Clarke SG. Mol. Cell 2009; 33: 1
    • 2a Krause CD, Yang Z.-H, Kim Y.-S, Lee J.-H, Cook JR, Pestka S. Pharmacol. Ther. 2007; 113: 50
    • 2b Paik WK, Kim S. J. Biol. Chem. 1968; 243: 2108
    • 2c Clarke S. Curr. Opin. Cell Biol. 1993; 5: 977
  • 3 MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley GS, Vallance P. Br. J. Pharmacol. 1996; 119: 1533
  • 4 Ash DE. J. Nutr. 2004; 134: 2760S ; discussion 2765S
    • 5a Ignarro LJ, Murad F. Nitric Oxide: Biochemistry, Molecular Biology, and Therapeutic Implications. Academic Press; San Diego: 1995
    • 5b Alderton WK, Cooper CE, Knowles RG. Biochem. J. 2001; 357: 593
  • 6 Leiper J, Nandi M. Nat. Rev. Drug Discovery 2011; 10: 277
  • 7 Litt M, Qiu Y, Huang S. Biosci. Rep. 2009; 29: 131
  • 8 Wei H, Mundade R, Lange KC, Lu T. Cell Cycle 2014; 13: 32
    • 9a Kotthaus J, Schade D, Töpker-Lehmann K, Beitz E, Clement B. Bioorg. Med. Chem. 2008; 16: 2305
    • 9b Lakowski TM, Szeitz A, Pak ML, Thomas D, Vhuiyan MI, Kotthaus J, Clement B, Frankel A. J. Proteomics 2013; 80: 43
  • 10 Zobel-Thropp P, Gary JD, Clarke S. J. Biol. Chem. 1998; 273: 29283
  • 11 Martens-Lobenhoffer J, Bode-Böger SM, Clement B. Anal. Biochem. 2015; 493: 14
  • 12 Klein C, Schulz G, Steglich W. Liebigs Ann. Chem. 1983; 1623
    • 13a Hrabak A, Bajor T, Temesi A. Biochem. Biophys. Res. Commun. 1994; 198: 206
    • 13b Reczkowski RS, Ash DE. Arch. Biochem. Biophys. 1994; 312: 31
  • 14 Luzzi SD, Marletta MA. Bioorg. Med. Chem. Lett. 2005; 15: 3934
  • 15 Schade D, Töpker-Lehmann K, Kotthaus J, Clement B. J. Org. Chem. 2008; 73: 1025
  • 16 Bada JL. Racemization of Amino Acids. In Chemistry and Biochemistry of the Amino Acids. Barrett GC. Springer; Dordrecht: 1985: 399-414
    • 17a Lin X, Dorr H, Nuss JM. Tetrahedron Lett. 2000; 41: 3309
    • 17b Bowman WR, Coghlan DR. Tetrahedron 1997; 53: 15787
    • 17c Fukuyama T, Jow C.-K, Cheung M. Tetrahedron Lett. 1995; 36: 6373
  • 18 Sasaki T, Minamoto K, Itoh H. J. Org. Chem. 1978; 43: 2320
  • 19 Moali C, Brollo M, Custot J, Sari M.-A, Boucher J.-L, Stuehr DJ, Mansuy D. Biochemistry 2000; 39: 8208
  • 20 Grehn L, Ragnarsson U. Angew. Chem., Int. Ed. Engl. 1985; 24: 510
  • 21 Gil-Av E, Tishbee A, Hare PE. J. Am. Chem. Soc. 1980; 102: 5115