Synthesis 2016; 48(04): 579-587
DOI: 10.1055/s-0035-1561295
paper
© Georg Thieme Verlag Stuttgart · New York

Rh(II)-Catalyzed Synthetic Strategy for Diverse and Functionalized Halonaphthalenyl Ethers and Esters from Diazo Compounds and Its Application to Polyaromatic Compounds

Ek Raj Baral
a  School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea   Email: yrlee@yu.ac.kr
,
Yong Rok Lee*
a  School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea   Email: yrlee@yu.ac.kr
,
Sung Hong Kim
b  Analysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 702-701, Republic of Korea
,
Young-Jung Wee
c  Department of Food Science and Technology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
› Author Affiliations
Further Information

Publication History

Received: 04 November 2015

Accepted: 23 November 2015

Publication Date:
28 December 2015 (online)


Abstract

An efficient and simple synthesis of various functionalized halonaphthalenyl ethers and esters in moderate to good yield was achieved via rhodium(II)-catalyzed reaction of readily available diazo compounds with benzyl halides or acid halides. This methodology has several advantages, such as ease of handling, mild reaction conditions, bromine- or chlorine-free route, and the use of an effective catalyst. The synthesized compounds were further converted into valuable polyaromatic compounds using the Suzuki reaction.

Supporting Information

 
  • References

    • 1a Edlund C, Ganning AE, Elhammer A. Acta Chem. Scand. B 1985; 39: 315
    • 1b Sotomayor N, Lete E. Curr. Org. Chem. 2003; 7: 275
    • 1c Fu GC. Acc. Chem. Res. 2008; 41: 1555
    • 1d Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 3a Lutz M, Winkler M, Muller G. Angew. Chem. Int. Ed. 1994; 33: 2279
    • 3b Cabri W, Candiani I. Acc. Chem. Res. 1995; 28: 2
    • 3c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 4a DelaMare PB. Electrophilic Halogenation . Cambridge University Press; Cambridge: 1976. Chap. 5
    • 4b Coburn CE, Anderson DK, Swenton JS. J. Org. Chem. 1983; 48: 1455
    • 4c Khan SA, Munawar MA, Siddiq M. J. Org. Chem. 1988; 53: 1799
    • 4d Rozen S, Lerman O. J. Org. Chem. 1993; 58: 239
    • 4e Yadav JS, Reddy BV. S, Reddy PS. R, Basak AK, Narsaiah AV. Adv. Synth. Catal. 2004; 346: 77
    • 4f Nishina Y, Takami K. Green Chem. 2012; 14: 2380
    • 5a Oberhauser T. J. Org. Chem. 1997; 62: 4504
    • 5b Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 5c Zhang Y, Shibatomi K, Yamamoto H. Synlett 2005; 2837
    • 5d Kishan MR, Rani VR, Devi PS, Kulkarni SJ, Raghavan KV. J. Mol. Catal. A: Chem. 2007; 269: 30
    • 5e Bovonsombat P, Ali R, Khan C, Leykajarakul J, Plaon K, Aphimanchindakul S, Pungcharoenpong N, Timsuea N, Arunrat A, Punpongjareorn N. Tetrahedron 2010; 66: 6928
  • 6 Vyas PV, Bhatt AK, Ramachandraiah G, Bedekar AV. Tetrahedron Lett. 2003; 44: 4085
    • 7a Roche D, Prasad K, Repic O, Blacklock TJ. Tetrahedron Lett. 2000; 41: 2083
    • 7b Dewkar GK, Narina SV, Sudalai A. Org. Lett. 2003; 5: 4501
    • 7c Schmidt R, Stolle A, Ondruschka B. Green Chem. 2012; 14: 1673
    • 8a Evans PA, Brandt TA. J. Org. Chem. 1997; 62: 5321
    • 8b Braddock DC, Cansell G, Hermitage SA. Synlett 2004; 461
    • 8c Kumar L, Mahajan T, Agarwal DD. Ind. Eng. Chem. Res. 2012; 51: 11593
  • 9 Wang Y, Li L, Ji H, Ma W, Chen C, Zhao J. Chem. Commun. 2014; 50: 2344
    • 10a Wan X, Ma Z, Li B, Zhang K, Cao S, Zhang S, Shi Z. J. Am. Chem. Soc. 2006; 128: 7416
    • 10b Kalyani D, Dick AR, Anani WQ, Sanford MS. Org. Lett. 2006; 8: 2523
    • 10c Mei T.-S, Giri R, Maugel N, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 5215
    • 10d Song B, Zheng X, Mo J, Xu B. Adv. Synth. Catal. 2010; 352: 329
    • 11a Menini L, Gusevskaya EV. Chem. Commun. 2006; 209
    • 11b Menini L, da Cruz SantosJ. C, Gusevskaya EV. Adv. Synth. Catal. 2008; 350: 2052
    • 11c Yang L, Lu Z, Stahl SS. Chem. Commun. 2009; 6460
  • 12 Singh PP, Thatikonda T, Kumar KA. A, Sawant SD, Singh B, Sharma AK, Sharma PR, Singh D, Vishwakarma RA. J. Org. Chem. 2012; 77: 5823
  • 13 Rana S, Bag S, Patra T, Maiti D. Adv. Synth. Catal. 2014; 356: 2453
  • 14 Cong Z, Kurahash T, Fujii H. J. Am. Chem. Soc. 2012; 134: 4469
    • 16a Lee YR, Hwang JC. Eur. J. Org. Chem. 2005; 1568
    • 16b Xia L, Lee YR. Adv. Synth. Catal. 2013; 355: 2361
    • 16c Somai Magar KB, Lee YR, Kim SH. Mol. Diversity 2013; 17: 679
    • 16d Xia L, Lee YR. Eur. J. Org. Chem. 2014; 3430
    • 16e Neupane P, Xia L, Lee YR. Adv. Synth. Catal. 2014; 356: 2566
    • 17a Neupane P, Li X, Jung JH, Lee YR, Kim SH. Tetrahedron 2012; 68: 2496
    • 17b Somai Magar KB, Lee YR. Org. Lett. 2013; 15: 4288
    • 17c Pandit RP, Lee YR. Org. Biomol. Chem. 2014; 12: 4407
    • 17d Baral ER, Lee YR, Kim SH. Adv. Synth. Catal. 2015; 357: 2883
    • 18a Lee YR, Suk JY. Chem. Commun. 1998; 2621
    • 18b Lee YR, Kim DH. Tetrahedron Lett. 2001; 42: 6561
    • 18c Lee YR, Jung YU. J. Chem. Soc., Perkin Trans. 1 2002; 1309
    • 18d Lee YR, Cho BS, Kwon HJ. Tetrahedron 2003; 59: 9333
  • 19 Somai Magar KB, Lee YR. Adv. Synth. Catal. 2014; 356: 3422
  • 20 Dias HV. R, Browning RG, Polach SA, Diyabalanage HV. K, Lovely CJ. J. Am. Chem. Soc. 2003; 125: 9270
  • 21 Tao J, Tran R, Murphy GK. J. Am. Chem. Soc. 2013; 135: 16312
  • 22 Kitamura M, Tashiro N, Sakata R, Okauchi T. Synlett 2010; 2503
  • 23 Mangas-Sanchez J, Busto E, Gotor-Fernandez V, Gotor V. Org. Lett. 2010; 12: 3498
  • 24 Etori H, Jin XL, Yasuda T, Mataka S, Tsutsui T. Synth. Met. 2006; 156: 1090