Synthesis 2016; 48(05): 730-736
DOI: 10.1055/s-0035-1561280
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Unsymmetrical Diaryl Selenides: Copper-Catalyzed Se-Arylation of Diaryl Diselenides with Triarylbismuthanes

Mio Matsumura
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
,
Kohki Shibata
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
,
Sota Ozeki
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
,
Mizuki Yamada
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
,
Yuki Murata
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
,
Naoki Kakusawa
b   Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan   Email: s-yasuik@dpc.agu.ac.jp
,
Shuji Yasuike*
a   School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
› Author Affiliations
Further Information

Publication History

Received: 19 October 2015

Accepted after revision: 11 November 2015

Publication Date:
29 December 2015 (online)


Abstract

Copper-catalyzed C(aryl)–Se bond formation by the reaction of diaryl diselenides with triarylbismuthanes in the presence of copper(I) acetate (10 mol%) and 1,10-phenanthroline (10 mol%) under aerobic conditions led to the formation of unsymmetric diaryl selenides in moderate to excellent yields. This reaction proceeded efficiently; all three aryl groups in the bismuthane and both the selanyl groups in the diaryl diselenide were transferred to the coupling products.

Supporting Information

 
  • References

    • 1a Wirth T. Organoselenium Chemistry: Synthesis and Reactions. Wiley-VCH; Weinheim: 2012
    • 1b Ogawa A In Main Group Metals in Organic Synthesis . Yamamoto H, Oshima K. Wiley-VCH; Weinheim: 2004. Chap. 15, 813
    • 1c Santoro S, Azeredo JB, Nascimento V, Sancineto L, Brage AL, Santi C. RSC Adv. 2014; 4: 31521
    • 1d Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985
    • 1e Marini F, Sternativo S. Synlett 2013; 24: 11
    • 1f Mukherjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 1g Freudendahl DM, Shahzad SA, Wirth T. Eur. J. Org. Chem. 2009; 1649
    • 2a Nogueira CW, Rocha JB. T. Arch. Toxicol. 2011; 85: 1313
    • 2b Sarma BK, Mugesh G. Org. Biomol. Chem. 2008; 6: 965
    • 2c Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 2d Mugesh G, Mont WW, Sies H. Chem. Rev. 2001; 101: 2125
    • 3a dos Santos EA, Hamel E, Bai R, Burnett JC, Tozatti CS. S, Bogo D, Perdomo RT, Antunes AM. M, Marques MM, Matos MF. C, de Lima DP. Bioorg. Med. Chem. Lett. 2013; 23: 4669
    • 3b Engman L, Cotgreave I, Angulo M, Taylor CW, Paine-Murrieta GD, Powis G. Anticancer Res. 1997; 17: 4599
    • 3c Engman L, Stern D, Frisell H, Vessman K, Berglund M, Ek B, Andersson C.-M. Bioorg. Med. Chem. 1995; 3: 1255
    • 3d Andersson C.-M, Hallberg A, Linden M, Brattsand R, Moldéus P, Cotgreave I. Free. Radical Biol. Med. 1994; 16: 17
    • 3e Woods JA, Hadfield JA, McGown AT, Fox BW. Bioorg. Med. Chem. 1993; 1: 333
    • 3f Goudgaon NM, Naguib FN. M, el Kouni MH, Schinazi RF. J. Med. Chem. 1993; 36: 4250
    • 4a Ranu BC, Dey R, Chatterjee T, Ahammed S. ChemSusChem 2012; 5: 22
    • 4b Beletskaya IP, Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 4c Beletskaya IP, Ananikov VP In Catalyzed Carbon–Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011. Chap. 3, 69
    • 4d Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 4e Beletskaya IP, Ananikov VP. Eur. J. Org. Chem. 2007; 3431
  • 5 Gujadhur RK, Venkataraman D. Tetrahedron Lett. 2003; 44: 81
    • 6a Taniguchi N, Onami T. Synlett 2003; 829
    • 6b Taniguchi N, Onami T. J. Org. Chem. 2004; 69: 915
    • 6c Kumar S, Engman L. J. Org. Chem. 2006; 71: 5400
    • 6d Reddy VP, Kumar AV, Swapna K, Rao KR. Org. Lett. 2009; 11: 951
    • 6e Singh D, Alberto EE, Rodrigues OE. D, Braga AL. Green Chem. 2009; 11: 1521
    • 6f Li Y, Wang H, Li X, Chen T, Zhao D. Tetrahedron 2010; 66: 8583
    • 6g Swapna K, Murthy SN, Nageswar YV. D. Eur. J. Org. Chem. 2011; 1940
    • 6h Dandapat A, Korupalli C, Prasad DJ. C, Singh R, Sekar G. Synthesis 2011; 2297
    • 6i Chatterjee T, Ranu BC. J. Org. Chem. 2013; 78: 7145
  • 7 Beletskaya IP, Sigeev AS, Peregudov AS, Petrovskii PV, Khrustalev VN. Chem. Lett. 2010; 39: 720
    • 8a Wang L, Wang M, Huang F. Synlett 2005; 2007
    • 8b Taniguchi N. J. Org. Chem. 2007; 72: 1241
    • 8c Alves D, Santos CG, Paixão MW, Soares LC, de Souza D, Rodrigues OE. D, Braga AL. Tetrahedron Lett. 2009; 50: 6635
    • 8d Ricordi VG, Freitas CS, Perin G, Lenardão EJ, Jacob RG, Savegnago L, Alves D. Green Chem. 2012; 14: 1030
    • 8e Zheng B, Gong Y, Xu H.-J. Tetrahedron 2013; 69: 5342
    • 8f Kumar A, Kumar S. Tetrahedron 2014; 70: 1763
    • 8g Roy S, Chatterjee T, Islam SkM. Tetrahedron Lett. 2015; 56: 779
  • 9 Bhadra S, Saha A, Ranu BC. J. Org. Chem. 2010; 75: 4864
    • 10a Condon S, Pichon C, Davi M. Org. Prep. Proced. Int. 2014; 46: 89
    • 10b Bismuth-Mediated Organic Reactions. In Topics in Current Chemistry. Vol. 311. Ollevier T. Springer; Heidelberg: 2012
    • 10c Matano Y In Main Group Metals in Organic Synthesis . Yamamoto H, Oshima K. Wiley-VCH; Weinheim: 2004. Chap. 14, 753
    • 10d Elliott GI, Konopelski JP. Tetrahedron 2001; 57: 5683
    • 11a Barton DH. R, Finet J.-P, Khamsi J. Tetrahedron Lett. 1987; 28: 887
    • 11b Chan DM. T. Tetrahedron Lett. 1996; 37: 9013
    • 11c Sorenson RJ. J. Org. Chem. 2000; 65: 7747
    • 11d Loog O, Mäeorg U, Ragnarsson U. Synthesis 2000; 1591
    • 11e Rasmussen LK, Begtrup M, Ruhland T. J. Org. Chem. 2004; 69: 6890
    • 11f Parrish JP, Trzupek JD, Hughes TV, Hwang I, Boger DL. Bioorg. Med. Chem. 2004; 12: 5845
    • 11g Hügel HM, Rix CJ, Fleck K. Synlett 2006; 2290
    • 11h Starkov P, Zemskov I, Sillard R, Tšubrik O, Mäeorg U. Tetrahedron Lett. 2007; 48: 1155
    • 11i Petiot P, Dansereau J, Gagnon A. RSC Adv. 2014; 4: 22255
    • 12a Sheppard GS. Synlett 1999; 1207
    • 12b Crifar C, Petiot P, Ahmad T, Gagnon A. Chem. Eur. J. 2014; 20: 2755
    • 12c Petiot P, Dansereau J, Hébert M, Khene I, Ahmad T, Samaali S, Leroy M, Pinsonneault F, Legault CY, Gagnon A. Org. Biomol. Chem. 2015; 13: 1322
  • 13 Arnauld T, Barton DH. R, Normant J.-F. J. Org. Chem. 1999; 64: 3722
  • 14 Kobiki Y, Kawaguchi S.-i, Ohe T, Ogawa A. Beilstein J. Org. Chem. 2013; 9: 1141
  • 15 Yasuike S, Nishioka M, Kakusawa N, Kurita J. Tetrahedron Lett. 2011; 52: 6403
  • 16 Kirai N, Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
  • 17 Combes S, Finet J.-P. Synth. Commun. 1996; 26: 4569
  • 18 Murafuji T, Nishio K, Nagasue M, Tanabe A, Aono M, Sugihara Y. Synthesis 2000; 1208
  • 19 Matano Y, Kinoshita M, Suzuki H. Bull. Chem. Soc. Jpn. 1992; 65: 3504
  • 20 Petiot P, Gagnon A. Eur. J. Org. Chem. 2013; 5282
  • 21 Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem. 2013; 11: 2943
  • 22 Poleschner H, Heydenreich M, Schilde U. Liebigs Ann. 1996; 1187
  • 23 Hiroi K, Sato S. Synthesis 1985; 635
  • 24 Stuhr-Hansen N, Sølling TI, Henriksen L. Tetrahedron 2011; 67: 2633
  • 25 Yamamoto T, Ogawa S, Sato R. Chem. Lett. 2006; 35: 422
  • 26 Prasad CD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S. J. Org. Chem. 2013; 78: 1434
  • 27 Ren K, Wang M, Wang L. Org. Biomol. Chem. 2009; 7: 4858