Synlett 2016; 27(02): 215-220
DOI: 10.1055/s-0035-1560802
letter
© Georg Thieme Verlag Stuttgart · New York

Highly Stereoselective Syntheses of Proline-Derived Vicinal Amino Alcohols through Grignard Addition onto N-Tosylprolinal

Saikat Chaudhuri
,
Amarchand Parida
,
Santanu Ghosh
,
Alakesh Bisai*
Further Information

Publication History

Received: 08 July 2015

Accepted after revision: 23 September 2015

Publication Date:
09 November 2015 (eFirst)

Abstract

A highly diastereoselective Grignard addition to N-tosyl-l-prolinal has been developed to deliver a variety of proline-derived vicinal amino alcohols in good to excellent yields with high diastereoselectivities. A similar selectivity was also obtained by using N-tosyl-d-prolinal. The methodology has been applied to the synthesis of medicinally important 3-hydroxy-2-phenylpiperidines.

Supporting Information

 
  • References and Notes

    • 1a Halskov KS, Kniep F, Lauridsen VH, Iversen EH, Donslund BS, Jørgensen KA. J. Am. Chem. Soc. 2015; 137: 1685
    • 1b Franzén J, Marigo M, Fielenbach D, Wabnitz TC, Kjærsgaard A, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 18296
    • 2a Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
    • 2b Trost BM, Shin S, Sclafani JA. J. Am. Chem. Soc. 2005; 127: 8602
    • 2c Trost BM, Bartlett MJ. Acc. Chem. Res. 2015; 48: 688 ; and references therein

      For the isolation of dolastatin 10, see:
    • 3a Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. J. Nat. Prod. 2001; 64: 907
    • 3b Salvador-Reyes LA, Engene N, Paul VJ, Luesch H. J. Nat. Prod. 2015; 78: 486
  • 4 For the isolation of symplostatin 1, see: Harrigan GG, Luesch H, Yoshida WY, Moore RE, Nagle DG, Paul VJ, Mooberry SL, Corbett TH, Valeriote FA. J. Nat. Prod. 1998; 61: 1075
  • 5 For the isolation of malevamide D, see: Horgen FD, Kazmierski EB, Westenburg HE, Yoshida WY, Scheuer PJ. J. Nat. Prod. 2002; 65: 487
  • 6 For auristatins, see: Pettit GR, Hogan F, Toms S. J. Nat. Prod. 2011; 74: 962
  • 7 Maderna A, Doroski M, Subramanyam C, Porte A, Leverett CA, Vetelino BC, Chen Z, Risley H, Parris K, Pandit J, Varghese AH, Shanker S, Song C, Sukura SC. K, Farley KA, Wagenaar MM, Shapiro MJ, Musto S, Lam M.-H, Loganzo F, O’Donnell CJ. J. Med. Chem. 2014; 57: 10527
    • 8a Pettit GR, Anderson CR, Gapud EJ, Jung MK, Knight JC, Hamel E, Pettit RK. J. Nat. Prod. 2005; 68: 1191
    • 8b For a review, see: Maderna A, Leverett CA. Mol. Pharmaceutics 2015; 12: 1798
  • 9 For the synthesis of 1a, see: Reed PE, Katzenellenbogen JA. J. Org. Chem. 1991; 56: 2624
  • 10 León B, Fong JC. N, Peach KC, Wong WR, Yildiz FH, Linington RG. Org. Lett. 2013; 15: 1234
    • 11a Roche C, Delair P, Greene AE. Org. Lett. 2003; 5: 1741
    • 11b Snider BB, Gao X. Org. Lett. 2005; 7: 4419
    • 11c Vargas-Sanchez M, Couty F, Evano G, Prim D, Marrot J. Org. Lett. 2005; 7: 5861
    • 11d El-Naggar M, Piggott AM, Capon RJ. Org. Lett. 2008; 10: 4247
    • 11e Zhang H, Zhang C.-R, Zhu K.-K, Gao A.-H, Luo C, Li J, Yue J.-M. Org. Lett. 2013; 15: 120
  • 12 For tylophoridicine E, see: Stoye A, Peez TE, Opatz T. J. Nat. Prod. 2013; 76: 275 ; and references cited
    • 13a Liu L.-X, Ruan Y.-P, Guo Z.-Q, Huang P.-Q. J. Org. Chem. 2004; 69: 6001
    • 13b Tsai M.-R, Chen B.-F, Cheng C.-C, Chang N.-C. J. Org. Chem. 2005; 70: 1780
  • 14 For (+)-GR-205,171 (5b), see: Fabio RD, Griffante C, Alvaro G, Pentassuglia G, Pizzi DA, Donati D, Rossi T, Guercio G, Mattioli M, Cimarosti Z, Marchioro C, Provera S, Zonzini L, Montanari D, Melotto S, Gerrard PA, Trist DG, Ratti E, Corsi M. J. Med. Chem. 2009; 52: 3238
  • 15 Clavez O, Langlois N. Tetrahedron Lett. 1999; 40: 7099

    • For 3-hydroxypipecolinic acid, see:
    • 16a Kumar P, Bodas MS. J. Org. Chem. 2005; 70: 360
    • 16b Liang N, Datta A. J. Org. Chem. 2005; 70: 10182
    • 16c Kalamkar NB, Kasture VM, Dhavale DD. J. Org. Chem. 2008; 73: 3619
    • 16d Chiou W.-H, Lin G.-H, Liang C.-W. J. Org. Chem. 2010; 75: 1748
    • 16e Kokatla HP, Lahiri R, Kancharla PK, Doddi VR, Vankar YD. J. Org. Chem. 2010; 75: 4608
    • 17a Wipf P, Hopkins CR. J. Org. Chem. 2001; 66: 3133
    • 17b Scott JD, Williams RM. J. Am. Chem. Soc. 2002; 124: 2951
    • 17c Wu Y.-C, Liron M, Zhu J. J. Am. Chem. Soc. 2008; 130: 7148
    • 18a Lemire A, Grenon M, Pourashraf M, Charette AB. Org. Lett. 2004; 6: 3517
    • 18b Kise N, Ohya K, Arimoto K, Yamashita Y, Hirano Y, Ono T, Ueda N. J. Org. Chem. 2004; 69: 7710
    • 18c Liu R.-H, Fang K, Wang B, Xu M.-H, Lin G.-Q. J. Org. Chem. 2008; 73: 3307
    • 18d Huy PH, Koskinen AM. P. Org. Lett. 2013; 15: 5178
    • 19a Lee J, Hoang T, Lewis S, Weissman SA, Askin D, Volante RP, Reider PJ. Tetrahedron Lett. 2001; 42: 6223
    • 19b Cossy J, Dumas C, Pardo DG. Eur. J. Org. Chem. 1999; 1693
    • 19c Métro T.-X, Appenzeller J, Pardo DG, Cossy J. Org. Lett. 2006; 8: 3509
    • 19d Cochi A, Burger B, Navarro C, Pardo DG, Cossy J, Zhao Y, Cohen T. Synlett 2009; 2157
    • 19e Cochi A, Pardo DG, Cossy J. Org. Lett. 2011; 13: 4442
    • 19f Rioton S, Orliac A, Antoun Z, Bidault R, Pardo DG, Cossy J. Org. Lett. 2015; 17: 2916
    • 19g Bilke JL, Moore SP, O’Brien P, Gilday J. Org. Lett. 2009; 11: 1935
    • 20a Andrés JM, Pedrosa R, Pérez A, Pérez-Encabo A. Tetrahedron 2001; 57: 8521
    • 20b Ma D, Pan Q, Han F. Tetrahedron Lett. 2002; 43: 9401
    • 21a Harris BD, Bhat KL, Joullié MM. Heterocycles 1986; 24: 1045
    • 21b Reed PE, Katzenellenbogen JA. J. Org. Chem. 1991; 56: 2624
    • 21c Ito H, Ikeuchi Y, Taguchi T, Hanzawa Y. J. Am. Chem. Soc. 1994; 116: 5469
    • 21d Mahboobi S, Popp A, Burgemeister T, Schollmeyer D. Tetrahedron: Asymmetry 1998; 9: 2369 ; and references cited therein
    • 22a Barrett AG. M, Damiani F. J. Org. Chem. 1999; 64: 1410
    • 22b Konradi AW, Kemp SJ, Pedersen SF. J. Am. Chem. Soc. 1994; 116: 1316
    • 23a Soai K, Ookawa A. J. Chem. Soc., Chem. Commun. 1986; 412
    • 23b Soai K, Ookawa A, Kaba T, Ogawa K. J. Am. Chem. Soc. 1987; 109: 7111
    • 23c Klein G, Pandiaraju S, Reiser O. Tetrahedron Lett. 2002; 43: 7503
    • 24a Funabiki K, Shibata A, Iwata H, Hatano K, Kubota Y, Komura K, Ebihara M, Matsui M. J. Org. Chem. 2008; 73: 4694
    • 24b Marquez F, Montoro R, Llebaria A, Lago E, Molins E, Delgado A. J. Org. Chem. 2002; 67: 308
    • 24c Pettit GR, Grealish MP. J. Org. Chem. 2001; 66: 8640
    • 24d Pettit GR, Singh SB, Herald DL, Lloyd-Williams P, Kantoci D, Burkett DD, Barkóczy J, Hogan F, Wardlaw TR. J. Org. Chem. 1994; 59: 6287
    • 24e Soai K, Ookawa A, Kaba T, Ogawa K. J. Am. Chem. Soc. 1987; 109: 7111
    • 24f Soai K, Ookawa A. Chem. Commun. 1986; 412
    • 25a Bejjani J, Chemla F, Audouin M. J. Org. Chem. 2003; 68: 9747
    • 25b For use of 9e in total synthesis, see: Liu P, Hong S, Weinreb SM. J. Am. Chem. Soc. 2008; 130: 7562
  • 26 MeMgBr addition to 4-(S)-TBS-protected-N-tosyl-d-prolinal afforded the products in 1.32:1 dr, see: Remuzon P, Bouzard D, Guiol C, Jacquet J.-P. J. Med. Chem. 1992; 35: 2898
  • 27 The diastereoselectivities in case of allylmagnesium halide addition to N-trityl-l-prolinal (9e) afforded the products with <2:1 dr [see ref. 25a].
  • 28 Addition of Grignard Reagents to the Aldehyde; General Procedure: To a stirred solution of crude 10 (253 mg, 1.0 mmol, 1.0 equiv) in anhydrous THF at –78 °C was added RMgBr (1.3 mmol, 1.3 equiv) slowly over a period of 5 min, and stirring was continued for 4 h. The reaction was quenched with sat. aq NH4Cl (2 mL) and extracted with EtOAc (3 × 20 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude mixture was purified by column chromatography to afford the desired product 15.( R )-Phenyl [(S)-1-Tosylpyrrolidin-2-yl] methanol [(–)-15a)]: White crystalline solid; Rf 0.51 (EtOAc–hexane, 20%). 1H NMR (400 MHz, CDCl3): δ = 7.74 (d, J = 8.25 Hz, 2 H), 7.38 (m, 2 H), 7.29–7.32 (m, 4 H), 7.20–7.24 (m, 1 H), 5.22 (m, 1 H), 3.76–3.80 (m, 1 H), 3.29–3.35 (m, 2 H), 3.21–3.27 (m, 1 H), 2.39 (s, 3 H), 1.77–1.86 (m, 1 H), 1.51–1.60 (m, 1 H), 1.14–1.32 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 143.9, 140.6, 134.0, 129.9, 128.2, 127.7, 127.4, 126.2, 75.0, 66.1, 50.6, 25.7, 24.4, 21.6. IR (film): 3499, 3120, 2980, 1795, 1654, 1560, 1510, 1499, 1475, 1460, 930, 750 cm–1. HRMS (ESI): m/z [M + H]+ calcd for [C18H22NO3S]+: 332.1315; found: 332.1333. [α]D 20.7 –156.4 (c = 0.042, MeOH).(R)-1-[(S)-1-Tosylpyrrolidin-2-yl]ethanol [(–)-15b)]: Colorless oil; Rf 0.40 (EtOAc–hexane, 20%). 1H NMR (400 MHz, CDCl3): δ = 7.68 (d, J = 8.12 Hz, 2 H), 7.29 (d, J = 8.01 Hz, 2 H), 4.15 (m, 1 H), 3.44–3.48 (m, 1 H), 3.27–3.37 (m, 2 H), 2.67 (br, 1 H), 2.39 (s, 3 H), 1.67–1.87 (m, 2 H), 1.50–1.62 (m, 1 H), 1.22–1.31 (m, 1 H), 1.12 (d, J = 6.45 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 143.8, 134.1, 129.8, 127.6, 69.0, 65.8, 50.5, 26.1, 24.5, 21.5, 18.4. IR (film): 3503, 1654, 1561, 1402, 1331, 1159, 1059, 983, 662 cm–1. HRMS (ESI): m/z [M + H]+ calcd for [C13H20NO3S]+: 270.1158; found: 270.1181. [α]D 22.2 –64.6 (c = 0.47, CH2Cl2).(R)-1-[(S)-1-Tosylpyrrolidin-2-yl]but-3-en-1-ol [(–)-15c)]: Colorless oil; Rf 0.43 (EtOAc–hexane, 20%). 1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 8.23 Hz, 2 H), 7.29 (d, J = 8.0 Hz, 2 H), 5.80–5.90 (m, 1 H), 5.07–5.13 (m, 2 H), 4.05–4.09 (m, 1 H), 3.49–3.53 (m, 1 H), 3.26–3.38 (m, 2 H), 2.39 (s, 3 H), 2.14–2.26 (m, 2 H), 1.83–1.92 (m, 1 H), 1.70–1.77 (m, 1 H), 1.50–1.58 (m, 1 H), 1.22–1.31 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 143.7, 134.8, 134.1, 129.8, 127.7, 127.6, 117.4, 72.2, 64.4, 50.3, 37.8, 25.8, 24.6, 21.5. HRMS (ESI): m/z [M + H]+ calcd for [C15H22 NO3S]+: 296.1315; found: 296.1336. [α]D 22.8 –90.3 (c = 0.43, CH2Cl2).(R)-1-[(S)-1-Tosylpyrrolidin-2-yl]prop-2-en-1-ol [(–)-15d)]: Colorless gel; Rf 0.49 (EtOAc–hexane, 20%). 1H NMR (400 MHz, CDCl3): δ = 7.69–7.71 (m, 2 H), 7.30 (d, J = 7.95 Hz, 2 H), 5.79–5.86 (m, 1 H), 5.30–5.36 (dt, J = 17.27, 1.58 Hz, 1 H), 5.17–5.21 (dt, J = 10.56, 1.55 Hz, 1 H), 4.46 (br, 1 H), 3.59–3.63 (m, 1 H), 3.26–3.39 (m, 2 H), 2.96 (d, J = 4.61 Hz, 1 H), 2.4 (s, 3 H), 1.70–1.83 (m, 2 H), 1.53–1.62 (m, 1 H), 1.22–1.30 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 143.9, 136.4, 134.0, 129.8, 127.6, 116.8, 74.5, 64.6, 50.6, 26.7, 24.5, 21.5; IR (film): 3584, 3099, 2981, 2059, 1870, 1655, 1544, 1474, 1154, 933 cm–1. HRMS (ESI): m/z [M + H]+ calcd for [C14H19NO3S]+: 282.1158; found: 282.1178. [α]D 27.0 –102.24 (c = 0.0352, MeOH).(R)-1-[(S)-1-Tosylpyrrolidin-2-yl]prop-2-yn-1-ol [(–)-15e)]: White crystalline solid; Rf 0.47 (EtOAc–hexane, 20%). 1H NMR (500 MHz, CDCl3): δ = 7.71 (d, J = 8.07 Hz, 2 H), 7.31 (d, J = 7.97 Hz, 2 H), 4.67 (br, 1 H), 3.67–3.70 (m, 1 H), 3.45–3.50 (m, 1 H), 3.42 (br s, 1 H), 3.29–3.34 (m, 1 H), 2.43 (d, J = 1.96 Hz, 1 H), 2.42 (s, 3 H), 1.96–2.0 (m, 1 H), 1.85–1.93 (m, 1 H), 1.73–1.80 (m, 1 H), 1.70 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 144.0, 133.9, 129.9, 127.6, 81.8, 74.4, 65.3, 64.3, 50.9, 27.9, 24.5, 21.6; IR (film): 3500, 3110, 2270, 1460, 1420, 1339, 1158, 1094 cm–1. HRMS (ESI): m/z [M + Na]+ calcd for [C14H17NO3S + Na]+: 302.0821; found: 302.0845. [α]D 20.7 –105 (c = 0.042, MeOH).
    • 29a Tasso B, Novelli F, Sparatore F, Fasoli F, Gotti C. J. Nat. Prod. 2013; 76: 727
    • 29b El-Naggar M, Piggott AM, Capon RJ. Org. Lett. 2008; 10: 4247
    • 29c Vargas-Sanchez M, Couty F, Evano G, Prim D, Marrot J. Org. Lett. 2005; 7: 5861
    • 29d Snider BB, Gao X. Org. Lett. 2005; 7: 4419
    • 29e Roche C, Delair P, Greene AE. Org. Lett. 2003; 5: 1741
    • 30a Pyrrolizidine alkaloids, see: Robertson J, Stevens K. Nat. Prod. Rep. 2014; 31: 1721 ; and references cited
    • 30b For a review on indolizidine alkaloids, see: Michael JP. Nat. Prod. Rep. 2008; 25: 139 ; and references cited therein
  • 31 For the use of N-tosyl-l-prolinal (10) in organic synthesis, see: Zhang Z, Wang F, Mu X, Chen P, Liu G. Angew. Chem. Int. Ed. 2013; 52: 7549