Synlett 2015; 26(19): 2623-2626
DOI: 10.1055/s-0035-1560709
synpacts
© Georg Thieme Verlag Stuttgart · New York

Genome Engineering with Synthetic Copper Nucleases

N. Fantoni
School of Chemical Sciences, National Institute for Cellular Biotechnology (NICB) and Nano-Bioanalytical Research Facility (NRF), Dublin City University, Glasnevin, Dublin 9, Ireland   Email: andrew.kellett@dcu.ie
,
T. Lauria
School of Chemical Sciences, National Institute for Cellular Biotechnology (NICB) and Nano-Bioanalytical Research Facility (NRF), Dublin City University, Glasnevin, Dublin 9, Ireland   Email: andrew.kellett@dcu.ie
,
A. Kellett*
School of Chemical Sciences, National Institute for Cellular Biotechnology (NICB) and Nano-Bioanalytical Research Facility (NRF), Dublin City University, Glasnevin, Dublin 9, Ireland   Email: andrew.kellett@dcu.ie
› Author Affiliations
Further Information

Publication History

Received: 21 September 2015

Accepted after revision: 26 October 2015

Publication Date:
11 November 2015 (online)


Abstract

Oxidative chemical nucleases represent an important class of synthetic compound that mediate nucleic acid recognition and strand scission. These agents have found utility as footprinting probes to map drug–DNA and protein–DNA interactions and also as clinical cytotoxins of human cancer. Herein, we highlight a recent contribution from our group on the application of the copper(II) 1,10-phenanthroline (OP) complex Cu(OP)2 as a novel DNA-shuffling agent capable of generating highly diverse mutant protein antibody libraries. By employing a recombinant antibody gene fragment specific for prostate-specific antigen (PSA), we compared variation and PSA-binding specificity within Taq DNA polymerase I reconstructed Cu(OP)2 oxidative digest fragments with hydrolytic restriction digests generated by DNase I. Results show the Cu(OP)2 mutant library contained highly PSA-specific binding antibodies thus indicating that oxidative chemical nucleases may be applied to generate novel antibody clones not accessible through the use of the traditional DNA-shuffling enzyme DNase I.

 
  • References

  • 1 Mancin F, Scrimin P, Tecilla P. Chem. Commun. 2012; 48: 5545
    • 2a Pitie M, Pratviel G. Chem. Rev. 2010; 110: 1018
    • 2b Jiang Q, Xiao N, Shi PF, Zhu YG, Guo ZJ. Coord. Chem. Rev. 2007; 251: 1951
  • 3 Suck D, Oefner C. Nature 1986; 321: 620
  • 4 Sigman DS, Graham DR, D’Aurora V, Stern AM. J. Biol. Chem. 1979; 254: 12269
  • 5 Larragy R, Fitzgerald J, Prisecaru A, Mckee V, Leonard P, Kellett A. Chem. Commun. 2015; 51: 12908
  • 6 Meijler MM, Zelenko O, Sigman DS. J. Am. Chem. Soc. 1997; 119: 1135
  • 7 Sigman DS, Bruice TW, Mazumder A, Sutton CL. Acc. Chem. Res. 1993; 26: 98
  • 8 Bales BC, Pitie M, Meunier B, Greenberg MM. J. Am. Chem. Soc. 2002; 124: 9062
  • 9 Chen TQ, Greenberg MM. J. Am. Chem. Soc. 1998; 120: 3815
  • 10 Gimisis T, Chatgilialoglu C. Oxidatively Formed Sugar Radicals in Nucleic Acids. In Encyclopedia of Radicals in Chemistry, Biology and Materials. Vol. 3. Chatgilialoglu C, Studer A. Wiley; Hoboken: 2012: 1345
  • 11 Molphy Z, Slator C, Chatgilialoglu C, Kellett A. Front. Chem. 2015; 3
    • 12a Cardew AS, Fox KR. DNase I Footprinting. In Drug-DNA Interaction Protocols. Vol. 613. Fox KR. Humana Press; Totowa: 2010: 153-172
    • 12b Spassky A, Sigman DS. Biochemistry 1985; 24: 8050
    • 12c Basak S, Nagaraja V. Nucleic Acids Res. 2001; 29: e105
  • 13 Stemmer WP. C. Nature (London, U.K.) 1994; 370: 389
  • 14 Zhao HM, Giver L, Shao ZX, Affholter JA, Arnold FH. Nat. Biotechnol. 1998; 16: 258
  • 15 Prisecaru A, Devereux M, Barron N, McCann M, Colleran J, Casey A, McKeee V, Kellett A. Chem. Commun. 2012; 48: 6906
  • 16 Eom SH, Wang JM, Steitz TA. Nature (London, U.K.) 1996; 382: 278
  • 17 Bales BC, Kodama T, Weledji YN, Pitie M, Meunier B, Greenberg MM. Nucleic Acids Res. 2005; 33: 5371