Synlett 2016; 27(04): 555-558
DOI: 10.1055/s-0035-1560546
cluster
© Georg Thieme Verlag Stuttgart · New York

Enantioselective Addition of Thiols to ortho-Quinone Methides Catalyzed by Chiral Phosphoric Acids

Zengwei Lai
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China   Email: sunjw@ust.hk
,
Jianwei Sun*
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. of China   Email: sunjw@ust.hk
› Author Affiliations
Further Information

Publication History

Received: 09 September 2015

Accepted after revision: 04 November 2015

Publication Date:
07 December 2015 (online)

Abstract

The first Brønsted acid catalyzed enantioselective addition of thiols to the in situ generated ortho-quinone methides (o-QMs) is described. Complementary to the chiral amine catalyzed approach, the present reaction employs a chiral phosphoric acid as the catalyst. The readily available o-hydroxybenzyl alcohols serve as the atom-economical precursors of o-QMs to react with tritylthiol with moderate to good efficiency and enantioselectivity under mild conditions.

Supporting Information

 
  • References and Notes


    • For reviews on o-QMs, see:
    • 1a Amouri H, Bras JL. Acc. Chem. Res. 2002; 35: 501
    • 1b Van De Water RW, Pettus TR. R. Tetrahedron 2002; 58: 5367
    • 1c Quinone Methides . Rokita SE. Wiley; Hoboken: 2009
    • 1d Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 1e Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 1f Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
    • 1g Caruana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
    • 1h Wang Z, Sun J. Synthesis 2015; 47: 3629

      For recent examples for o-QMs in total synthesis, see:
    • 2a Zhao N, Ren X, Ren J, Lu H, Ma S, Gao R, Li Y, Xu S, Li L, Yu S. Org. Lett. 2015; 17: 3118
    • 2b Jepsen TH, Thomas SB, Lin Y, Stathakis CI, de Miguel I, Snyder SA. Angew. Chem. Int. Ed. 2014; 53: 6747
    • 2c Song L, Yao H, Tong R. Org. Lett. 2014; 16: 3740
    • 2d Green JC, Brown ER, Pettus TT. R. Org. Lett. 2012; 14: 2929
    • 2e Liao DH, Li HH, Lei XG. Org. Lett. 2012; 14: 18

      For catalytic asymmetric reactions of o-QMs with carbon-based nucleophiles by chiral phosphoric acid catalysis, see:
    • 3a Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
    • 3b El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
    • 3c Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
    • 3d Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
    • 3e Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
    • 3f Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
    • 3g Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
    • 3h Saha S, Schneider C. Chem. Eur. J. 2015; 21: 2348
    • 3i Saha S, Schneider C. Org. Lett. 2015; 17: 648
    • 3j Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703
    • 3k Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460

      For catalytic asymmetric reactions of o-QMs with carbon-based nucleophiles with other catalysts or approaches, see:
    • 4a Alden-Danforth E, Scerba MT, Lectka T. Org. Lett. 2008; 10: 4951
    • 4b Luan Y, Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
    • 4c Izquierdo J, Orue A, Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 4d Lv H, Jia W.-Q, Sun L.-H, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 4e Caruana L, Mondatori M, Corti V, Morales S, Mazzanti A, Fochi M, Bernardi L. Chem. Eur. J. 2015; 21: 6037
    • 4f Wu B, Gao X, Yan Z, Huang W.-X, Zhou Y.-G. Tetrahedron Lett. 2015; 56: 4334
    • 4g Huang Y, Hayashi T. J. Am. Chem. Soc. 2015; 137: 7556
    • 4h Hu H, Liu Y, Guo J, Lin L, Xu Y, Liu X, Feng X. Chem. Commun. 2015; 51: 3835

      For asymmetric examples with oxygen- and nitrogen-based nucleophiles, see:
    • 5a Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
    • 5b Jensen KH, Pathak TP, Zhang Y, Sigman MS. J. Am. Chem. Soc. 2009; 131: 17074
    • 5c Jensen KH, Webb JD, Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
    • 5d Jana R, Pathak TP, Jensen KH, Sigman MS. Org. Lett. 2012; 14: 4074
    • 5e Zhang Y.-C, Jiang F, Wang S.-L, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 6143
    • 5f Zhu R.-Y, Wang C.-S, Zheng J, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 9305
  • 6 Guo W, Wu B, Zhou X, Chen P, Wang X, Zhou Y.-G, Liu Y, Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
  • 7 General Procedure: At −20 °C (or otherwise noted), to an oven-dried 5-mL flask charged with a mixture of the substrate 1 (0.15 mmol), the thiol (0.165 mmol), and 3 Å MS (30 mg) in CHCl3 (0.75 mL) was added the catalyst (R)-B3 (10 mg, 15 μmol, 10 mol%). The reaction mixture was stirred for 4 d at the same temperature. The reaction mixture was then treated with solid Na2CO3 (30 mg) and concentrated under reduced pressure. The residue was purified by silica gel chromatography to afford the pure product 2. (R)-4-Methyl-2-[phenyl(tritylthio)methyl]phenol (2b): Prepared as a colorless oil according to the general procedure (purification by flash column chromatography: hexanes–EtOAc, 10:1): 32.3 mg, 46% yield, 89:11 er); [α]D 25 −57.6 (c = 1.0, CHCl3). HPLC analysis of the product (Daicel CHIRALPAK AD-H column; 10% i-PrOH in hexanes; flow rate = 1.0 mL/min): t R = 5.6 min (major), 7.6 min (minor). 1H NMR (400 MHz, CDCl3): δ = 7.43 (d, J = 7.7 Hz, 6 H), 7.13–7.33 (m, 14 H), 6.83 (d, J = 8.1 Hz, 1 H), 6.75 (s, 1 H), 6.56 (d, J = 8.1 Hz, 1 H), 5.63 (s, 1 H), 4.83 (s, 1 H), 2.17 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 150.7, 143.9, 141.5, 130.3, 129.7, 129.6, 128.5, 128.4, 128.1, 127.7, 127.3, 126.8, 126.7, 116.6, 69.6, 50.4, 20.4. IR (neat): 3688, 3056, 1593, 1495, 1262, 1083, 740 cm–1. HRMS (EI): m/z [M − H] calcd for C33H27OS: 471.1783; found: 471.1767.