Synlett 2015; 26(20): 2826-2830
DOI: 10.1055/s-0035-1560517
cluster
© Georg Thieme Verlag Stuttgart · New York

A Facile and Efficient Synthesis of Six-Membered Enol Carbocyclic Compounds

De-Suo Yang*
a  Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, P. R. of China
,
Sen Ke
a  Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, P. R. of China
,
Ming-Jin Fan
a  Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, P. R. of China
,
Hai-Tao Zhu
a  Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, P. R. of China
,
Xiao-Ling Wang
a  Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, P. R. of China
,
Zheng-Hui Guan*
b  Key Laboratory of Synthesis and Natural Functional Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China   Email: yangdesuo@163.com
› Author Affiliations
Further Information

Publication History

Received: 30 July 2015

Accepted after revision: 13 October 2015

Publication Date:
28 October 2015 (online)


Abstract

A facile and efficient method for the synthesis of six-membered enol carbocyclic compounds was realized by intermolecular cyclization reaction of 3-aryllidenepentane-2,4-diones with t-BuOK in CH2Cl2. The reaction is conducted under mild conditions and shows good functional group tolerance.

Supporting Information

 
  • References and Notes

    • 1a Taniguchi Y, Taniguchi H, Matsukura Y, Kawachi Y, Shindo K. J. Nat. Prod. 2014; 77: 1252
    • 1b Ferreira EA, Reigada JB, Correia MV, Young MC. M, Guimarães EF, Franchi GC. Jr, Nowill AE, Lago JH. G, Yamaguchi LF. J. Nat. Prod. 2014; 77: 1377
    • 1c Klaić L, Morimoto RI, Silverman RB. ACS Chem. Biol. 2012; 7: 928
    • 1d Maskey RP, Grün-Wollny IG, Laatsch H. J. Nat. Prod. 2005; 68: 865
    • 1e Payton F, Sandusky P, Alworth WL. J. Nat. Prod. 2007; 70: 145
    • 2a Trost BM, Xu JY, Schmidt T. J. Am. Chem. Soc. 2009; 131: 18343
    • 2b Lawrence AJ, Hutchings MG, Kennedy AR, McDoual JJ. W. J. Org. Chem. 2010; 75: 690
    • 2c Lauer MG, Henderson WH, Awad A, Stambuli JP. Org. Lett. 2012; 14: 6000
    • 3a Makeiff DA, Vishnumurthy K, Sherman JC. J. Am. Chem. Soc. 2003; 125: 9558
    • 3b DeBergh JR, Spivey KM, Ready JM. J. Am. Chem. Soc. 2008; 130: 7828
    • 3c Lindner PE, Correa RA, Gino J, Lemal DM. J. Am. Chem. Soc. 1996; 118: 2556
    • 3d Itoh K, Hasegawa M, Tanaka J, Kanemasa S. Org. Lett. 2005; 7: 979
    • 3e Basheer A, Rappoport Z. Org. Lett. 2006; 8: 5931
    • 3f Babinski D, Soltani O, Frantz DE. Org. Lett. 2008; 10: 2901
    • 3g Lindner PE, Lemal DM. J. Am. Chem. Soc. 1997; 119: 3259
    • 4a Scott WJ, McMurry JE. Acc. Chem. Res. 1988; 21: 54
    • 4b Wenkert E. Acc. Chem. Res. 1980; 13: 27
  • 5 Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
  • 6 Kuwajima I, Nakamura E. Acc. Chem. Res. 1985; 18: 181
  • 7 Holan M, Pohl R, Cisarova I, Jahn U. Eur. J. Org. Chem. 2012; 3459
  • 8 CCDC-1426187 (2l) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
  • 9 Shindo M, Kita T, Kumagai T, Matsumoto K, Shishido K. J. Am. Chem. Soc. 2006; 128: 1062
  • 10 Argüello JE, Peñéñory AB, Rossi RA. J. Org. Chem. 1999; 64: 6115
  • 11 General Procedure: To a solution of α,β-unsaturated ketone derivatives 1a (1 mmol) in CH2Cl2 (5.0 mL), t-BuOK (1.3 mmol) was added at room temperature. Upon completion, the reaction was quenched with H2O, the mixture was extracted with EtOAc (3 × 15 mL), and the combined organic extract was washed with H2O, saturated brine, dried over Na2SO4, and evaporated under reduced pressure. The residue was purified by chromatography on silica gel to afford the corresponding enolate of 2a. Data for 2a: 1H NMR (400 MHz, CDCl3): δ = 7.38 (t, J = 7.2 Hz, 2 H), 7.31 (dd, J = 14.6, 7.2 Hz, 2 H), 7.28–7.24 (m, 2 H), 7.23 (d, J = 4.8 Hz, 2 H), 7.19 (t, J = 6.5 Hz, 2 H), 4.69 (s, 1 H), 3.88 (t, J = 8.9 Hz, 1 H), 3.01 (d, J = 8.7 Hz, 2 H), 2.44 (s, 3 H), 1.95 (s, 3 H), 1.15 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 208.7, 205.8, 200.2, 180.2, 140.3, 139.0, 130.0, 129.2, 129.0, 128.3, 128.1, 127.0, 108.6, 71.8, 48.3, 39.2, 36.9, 30.3, 30.0, 25.6. IR (neat): 3060, 2918, 2850, 1724, 1683, 1496, 1414, 1350, 768 cm–1. HRMS (ESI): m/z [M – H] calcd for C24H23O4: 375.1597; found: 375.1603. Data for 2b: 1H NMR (400 MHz, CDCl3): δ = 7.36 (d, J = 8.4 Hz, 2 H), 7.21 (d, J = 8.5 Hz, 2 H), 7.16 (d, J = 8.5 Hz, 2 H), 7.13 (d, J = 8.7 Hz, 2 H), 4.66 (s, 1 H), 3.75 (t, J = 9.0 Hz, 1 H), 2.95 (d, J = 9.0 Hz, 2 H), 2.41 (s, 3 H), 1.95 (s, 3 H), 1.28 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 207.3, 205.4, 200.1, 180.0, 138.4, 137.5, 134.4, 133.1, 131.1, 130.8, 129.2, 128.5, 108.4, 72.0, 47.4, 38.9, 36.6, 30.5, 29.9, 25.6. IR (neat): 3076, 2919, 2850, 1720, 1689, 1490, 1413, 1352, 775 cm–1. HRMS (ESI): m/z [M – H] calcd for C24H21Cl2O4: 443.0817; found: 443.0825.