Synlett 2016; 27(04): 575-580
DOI: 10.1055/s-0035-1560507
cluster
© Georg Thieme Verlag Stuttgart · New York

Catalytic Asymmetric Cascade Dearomatization of Tryptamines with Indol-3-ylmethanols: Diastereo- and Enantioselective Synthesis of Structurally Complex Indole Derivatives

Fei Jiang
a  Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Yu-Chen Zhang
a  Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Xue Yang
a  Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Qiu-Ning Zhu
a  Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. of China
,
Feng Shi*
a  Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, P. R. of China
b  Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. of China   Email: fshi@jsnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 23 August 2015

Accepted after revision: 28 September 2015

Publication Date:
21 October 2015 (online)


Abstract

A chiral phosphoric acid-catalyzed asymmetric cascade dearomatization reaction of tryptamines with indol-3-ylmethanols has been established. This not only realized the first catalytic asymmetric cascade substitution of indol-3-ylmethanols, but also provided an efficient and stereoselective method (99% yield, >95:5 dr, 95:5 er) for constructing complex pyrroloindoline-based skeletons with three contiguous stereogenic centers, two of which were all-carbon quaternary centers.

Supporting Information

 
  • References

  • 1 These two authors contributed equally to the work.
    • 3a Austin JF, Kim S.-G, Sinz CJ, Xiao W.-J, MacMillan DW. C. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5482
    • 3b Kim J, Movassaghi M. J. Am. Chem. Soc. 2011; 133: 14940
    • 3c Snell RH, Woodward RL, Willis MC. Angew. Chem. Int. Ed. 2011; 50: 9116
    • 3d Boyer N, Movassaghi M. Chem. Sci. 2012; 3: 1798
    • 3e Luo L, Zhang J.-J, Ling W.-J, Shao Y.-L, Wang Y.-W, Peng Y. Synthesis 2014; 46: 1908
    • 3f Liu C, Yin Q, Dai L.-X, You S.-L. Chem. Commun. 2015; 51: 5971
  • 4 Menozzi C, Dalko PI, Cossy J. Chem. Commun. 2006; 4638

    • For some recent reviews on dearomatizations, see:
    • 5a Pouységu L, Deffieux D, Quideau S. Tetrahedron 2010; 66: 2235
    • 5b Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
    • 5c Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 5d Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558

    • For selected examples of catalytic asymmetric dearomatization of tryptamines, see:
    • 5e Trost BM, Quancard J. J. Am. Chem. Soc. 2006; 128: 6314
    • 5f Lozano O, Blessley G, Martinez del Campo T, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew. Chem. Int. Ed. 2011; 50: 8105
    • 5g Zhang Z, Antilla JC. Angew. Chem. Int. Ed. 2012; 51: 11778
    • 5h Cai Q, Liu C, Liang X.-W, You S.-L. Org. Lett. 2012; 14: 4588
    • 5i Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
    • 5j Xie W, Jiang G, Liu H, Hu J, Pan X, Zhang H, Wan X, Lai Y, Ma D. Angew. Chem. Int. Ed. 2013; 52: 12924
    • 5k Wei Q, Wang Y.-Y, Du Y.-L, Gong L.-Z. Beilstein J. Org. Chem. 2013; 9: 1559
    • 5l Nelson HM, Reisberg SH, Shunatona HP, Patel JS, Toste FD. Angew. Chem. Int. Ed. 2014; 53: 5600
    • 5m Shao W, Li H, Liu C, Liu C.-J, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 7684

      For some reviews, see:
    • 6a Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 6b Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 6c Chen Y, Wang L, Xiao J. Asian J. Org. Chem. 2014; 3: 1036

      For enantioselective substitutions, see:
    • 7a Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 7b Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 7c Cozzi PG, Benfatti F, Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313
    • 7d Liang T, Zhang Z.-J, Antilla JC. Angew. Chem. Int. Ed. 2010; 49: 9734
    • 7e Wang D.-S, Tang J, Zhou Y.-G, Chen M.-W, Yu C.-B, Duan Y, Jiang G.-F. Chem. Sci. 2011; 2: 803
    • 7f Xiao J, Zhao K, Loh T.-P. Chem. Asian J. 2011; 6: 2890
    • 7g Xiao J. Org. Lett. 2012; 14: 1716
    • 7h Xiao J, Zhao K, Loh T.-P. Chem. Commun. 2012; 48: 3548
    • 7i Song L, Guo Q.-X, Li X.-C, Tian J, Peng Y.-G. Angew. Chem. Int. Ed. 2012; 51: 1899
    • 7j Guo C, Song J, Huang J.-Z, Chen P.-H, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046
    • 7k Song J, Guo C, Adele A, Yin H, Gong L.-Z. Chem. Eur. J. 2013; 19: 3319
    • 7l Hamilton JY, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2013; 135: 994
    • 7m Xu B, Shi L.-L, Zhang Y.-Z, Wu Z.-J, Fu L.-N, Luo C.-Q, Zhang L.-X, Peng Y.-G, Guo Q.-X. Chem. Sci. 2014; 5: 1988
    • 7n Liu Y, Zhang H.-H, Zhang Y.-C, Jiang Y, Shi F, Tu S.-J. Chem. Commun. 2014; 50: 12054
    • 7o Tan W, Du B.-X, Li X, Zhu X, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 4635
    • 7p Guo Z.-L, Xue J.-H, Fu L.-N, Zhang S.-E, Guo Q.-X. Org. Lett. 2014; 16: 6472
    • 7q Tang X.-D, Li S, Guo R, Nie J, Ma J.-A. Org. Lett. 2015; 17: 1389
    • 7r Sun X.-X, Du B.-X, Zhang H.-H, Ji L, Shi F. ChemCatChem 2015; 7: 1211

      For enantioselective cyclizations, see:
    • 8a Han B, Xiao Y.-C, Yao Y, Chen Y.-C. Angew. Chem. Int. Ed. 2010; 49: 10189
    • 8b Xu B, Guo Z.-L, Jin W.-Y, Wang Z.-P, Peng Y.-G, Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
    • 8c Huang J, Luo S, Gong L. Acta Chim. Sin. (Engl. Ed.) 2013; 71: 879
    • 8d Shi F, Zhu R.-Y, Dai W, Wang C.-S, Tu S.-J. Chem. Eur. J. 2014; 20: 2597
    • 8e Dai W, Lu H, Li X, Shi F, Tu S.-J. Chem. Eur. J. 2014; 20: 11382
    • 8f Tan W, Li X, Gong Y.-X, Ge M.-D, Shi F. Chem. Commun. 2014; 50: 15901
    • 8g Shi F, Zhang H.-H, Sun X.-X, Liang J, Fan T, Tu S.-J. Chem. Eur. J. 2015; 21: 3465
    • 8h Lebée C, Kataja AO, Blanchard F, Masson G. Chem. Eur. J. 2015; 21: 8399

      For some reviews, see:
    • 9a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 9b Terada M. Chem. Commun. 2008; 4097
    • 9c Terada M. Synthesis 2010; 1929
    • 9d Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 9e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 9f Wu H, He Y.-P, Shi F. Synthesis 2015; 47: 1990
    • 10a Shi F, Xing G.-J, Zhu R.-Y, Tan W, Tu S.-J. Org. Lett. 2013; 15: 128
    • 10b Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
    • 10c Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
  • 11 3′-(2,3,8,8a-Tetrahydropyrrolo[2,3-b]indol-3a(1H)-yl)-1′,3′-dihydro-1H,2′H-2,3′-biindol-2′-ones 3; General Procedure CH2Cl2 (4 mL) was added to the mixture of the appropriate indol-3-ylmethanol 1 (0.1 mmol), tryptamine 2 (0.2 mmol), catalyst 4a (0.01 mmol), and 5 Å MS (100 mg). The mixture was stirred at 0 °C for 12 h then filtered to remove the MS. The solid powder was washed with EtOAc, and the organic phase was concentrated under the reduced pressure to give a residue that was purified by flash column chromatography (silica gel previously flushed with 10% Et3N–PE).
  • 12 tert-Butyl 3a-(1′-Benzyl-2′-oxo-1′,2′-dihydro-1H,3′H-2,3′-biindol-3′-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (3aa) White solid, yield: 89% (88:12 dr); mp 152–154 °C; [α]D 20 +390.9 (c 0.1, acetone). IR (KBr): 3321, 3055, 2971, 1700, 1609, 1456, 1364, 1341, 1168, 1011, 741, 687 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.32 (s, 1 H), 8.11 (s, 1 H), 7.60 (d, J = 7.6 Hz, 1 H), 7.47 (d, J = 8.0 Hz, 1 H), 7.42–7.27 (m, 7 H), 7.24–7.04 (m, 5 H), 7.03–6.91 (m, 3 H), 6.88 (d, J = 2.4 Hz, 1 H), 4.99 (d, J = 1.6 Hz, 2 H), 4.37 (s, 1 H), 3.15–2.80 (m, 2 H), 2.49 (t, J = 7.2 Hz, 2 H), 1.42 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 176.2, 155.8, 141.9, 137.0, 135.6, 134.7, 132.3, 131.7, 129.5, 129.4, 128.8, 128.7, 127.9, 127.8, 125.6, 125.2, 123.9, 123.0, 122.8, 121.9, 121.7, 120.4, 119.4, 119.2, 114.1, 111.5, 110.8, 110.2, 109.6, 53.3, 44.4, 28.5. HRMS (ESI): m/z [M – H]+ calcd for C38H35N4O3: 595.2709; found: 595.2707. Chiral HPLC: Daicel Chirapak IC [hexane–i-PrOH (70:30), flow rate: 1.0 mL/min; T = 30 °C, 254 nm]: tR  = 5.293 (major), 6.280 (minor); er: 90:10. tert-Butyl 3a-(1′-Methyl-2′-oxo-1′,2′-dihydro-1H,3′H-2,3′-biindol-3′-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (3da) White solid; yield: 83% (>95:5 dr); mp 173–175 °C; [α]D 20 +112.0 (c 0.7, acetone). IR (KBr): 3322, 3055, 2928, 2360, 2341, 1705, 1609, 1457, 1366, 1170, 742, 696, 541 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.51 (s, 1 H), 8.15 (s, 1 H), 7.58 (d, J = 7.6 Hz, 1 H), 7.48 (d, J = 8.0 Hz, 1 H), 7.40–7.28 (m, 3 H), 7.20–7.09 (m, 3 H), 7.09–7.02 (m, 2 H), 6.98 (t, J = 8.0 Hz, 2 H), 6.84 (d, J = 2.4 Hz, 1 H), 4.61 (s, 1 H), 3.30 (s, 3 H), 3.14–2.95 (m, 2 H), 2.63–2.46 (m, 2 H), 1.43 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 176.3, 155.9, 142.7, 137.1, 134.7, 132.2, 131.9, 129.4, 128.8, 125.6, 125.1, 124.0, 123.1, 122.6, 121.8, 121.5, 120.2, 119.4, 119.1, 113.7, 111.5, 110.9, 110.0, 108.8, 53.3, 40.6, 28.5, 26.7, 24.9. HRMS (ESI): m/z [M + Na]+ calcd for C32H32N4NaO3: 543.2372; found: 543.2374. Chiral HPLC: Daicel Chirapak IC [hexane–i-PrOH (70:30), flow rate: 1.0 mL/min; T = 30 °C, 254 nm]: tR  = 6.963 (major), 13.767 (minor); er: 87:13. tert-Butyl 3a-(1′-Benzyl-5′-methyl-2′-oxo-1′,2′-dihydro-1H,3′H-2,3′-biindol-3′-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (3fa) White solid; yield: 43% (>95:5 dr); mp 210–212 °C; [α]D 20 +133.2 (c 0.4, acetone). IR (KBr): 3347, 2974, 2926, 2359, 2341, 1699, 1456, 1088, 880, 742 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.39 (s, 1 H), 8.10 (s, 1 H), 7.61 (d, J = 7.6 Hz, 1 H), 7.46 (d, J = 8.0 Hz, 1 H), 7.38–7.27 (m, 6 H), 7.16 (d, J = 8.4 Hz, 4 H), 7.09–7.04 (m, 2 H), 6.99 (t, J = 7.6 Hz, 1 H), 6.88–6.82 (m, 2 H), 4.96 (s, 2 H), 4.43 (s, 1 H), 3.14–2.85 (m, 2 H), 2.51 (t, J = 7.2 Hz, 2 H), 2.24 (s, 3 H), 1.43 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 176.2, 155.9, 139.5, 137.0, 135.8, 134.7, 132.6, 132.3, 131.9, 129.0, 128.8, 127.9, 127.8, 125.9, 125.6, 124.0, 122.7, 121.8, 121.7, 120.3, 119.4, 119.2, 114.2, 111.5, 110.8, 110.1, 109.4, 53.4, 44.4, 40.5, 28.5, 24.9, 21.1. HRMS (ESI): m/z [M + Na]+ calcd for C39H38N4NaO3: 633.2842; found: 633.2849. Chiral HPLC: Daicel Chirapak IC [hexane–i-PrOH (70:30), flow rate: 1.0 mL/min; T = 30 °C, 254 nm]: tR  = 5.387 (major), 6.747 (minor); er: 90:10. tert-Butyl 3a-(1′-Benzyl-6-bromo-2′-oxo-1′,2′-dihydro-1H,3′H-2,3′-biindol-3′-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (3la) White solid; yield: 40% (>95:5 dr); mp 103–105 °C; [α]D 20 +65.3 (c 0.3, acetone). IR (KBr): 3420, 2923, 2852, 2360, 2341, 1716, 1684, 1169, 1105, 939, 742, 698 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.59 (s, 1 H), 8.05 (s, 1 H), 7.59 (d, J = 7.6 Hz, 1 H), 7.48 (s, 1 H), 7.38–7.26 (m, 8 H), 7.18–7.11 (m, 2 H), 7.07 (d, J = 1.6 Hz, 1 H), 7.06–7.03 (m, 1 H), 7.03–6.94 (m, 2 H), 6.79 (d, J = 2.8 Hz, 1 H), 4.96 (s, 2 H), 4.41 (s, 1 H), 3.11–2.85 (m, 2 H), 2.50 (t, J = 7.2 Hz, 2 H), 1.43 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 176.2, 155.9, 141.8, 137.9, 135.5, 134.7, 132.0, 131.4, 129.3, 128.9, 128.0, 127.8, 125.1, 124.5, 124.5, 123.6, 123.2, 122.8, 122.0, 119.6, 119.2, 116.4, 114.5, 114.3, 110.9, 110.3, 109.7, 53.2, 44.4, 28.5. HRMS (ESI): m/z [M + Na]+ calcd for C38H35BrN4NaO3: 697.1791; found: 697.1826. Chiral HPLC: Daicel Chirapak IC [hexane–i-PrOH (70:30), flow rate: 1.0 mL/min; T = 30 °C, 254 nm]: tR  = 13.320 (major), 41.177 (minor); er: 95:5