Synthesis 2016; 48(01): 65-72
DOI: 10.1055/s-0035-1560492
paper
© Georg Thieme Verlag Stuttgart · New York

A Convenient Synthesis of Spiro[isoxazole-pyrazoloquinoline] Derivatives under Catalyst-Free Conditions

Bin-Bin Feng
School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. of China   Email: xswang@jsnu.edu.cn
,
Jing Xu
School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. of China   Email: xswang@jsnu.edu.cn
,
Mei-Mei Zhang
School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. of China   Email: xswang@jsnu.edu.cn
,
Xiang-Shan Wang*
School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. of China   Email: xswang@jsnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 03 August 2015

Accepted after revision: 14 September 2015

Publication Date:
19 October 2015 (online)


Abstract

The same three-component reaction of aromatic aldehyde, 1H-indazol-6-amine and 3-phenylisoxazol-5(4H)-one in refluxing ethanol under catalyst-free conditions gave two entirely different kinds of products depending on the substituents on the benzene ring. The reaction selectively gave 5H-spiro[isoxazole-4,8′-pyrazolo[3,4-f]quinolin]-5-ones with strong electron-withdrawing groups on the aromatic aldehyde, while it resulted in ring-opened pyrazoloquinoline derivatives with other substituents. The former structure was confirmed by X-ray diffraction analysis.

Supporting Information

 
  • References

    • 1a Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
    • 1b Rodrigues T, da Cruz FP, Lafuente-Monasterio MJ, Gonçalves D, Ressurreição AS, Sitoe AR, Bronze MR, Gut J, Schneider G, Mota MM, Rosenthal PJ, Prudêncio M, Gamo F.-J, Lopes F, Moreira R. J. Med. Chem. 2013; 56: 4811
    • 1c Weissbuch I, Leiserowitz L. Chem. Rev. 2008; 108: 4899
  • 2 Ballestero JA, Plazas PV, Kracun S, Gómez-Casati ME, Taranda J, Rothlin CV, Katz E, Millar NS, Elgoyhen AB. Mol. Pharmacol. 2005; 68: 822
  • 3 Grombein CM, Hu QZ, Rau S, Zimmer C, Hartmann RW. Eur. J. Med. Chem. 2015; 90: 788
  • 4 Gao Y, Ji BS. Blood Coagul. Fibrin. 2014; 25: 476
  • 5 Sangani CB, Makawana JA, Duan YT, Yin Y, Teraiya SB, Thumar NJ, Zhu HL. Bioorg. Med. Chem. Lett. 2014; 24: 4472
  • 6 Shi L, Wu TT, Wang Z, Xue JY, Xu YG. Eur. J. Med. Chem. 2014; 84: 698
  • 7 Dinger J, Meyer MR, Maurer HH. Toxicol. Lett. 2014; 230: 28
    • 8a Dai R, Nie XY, Li H, Saeed M, Deng YL, Yao GW. Electrophoresis 2007; 28: 2566
    • 8b Nam G, Kang TW, Shin JH, Choi K. Bioorg. Med. Chem. Lett. 2006; 16: 569
    • 8c Zhou CC, Huang XM, Ford KL, Hollis LS. J. Antibiot. 2005; 58: 539
    • 8d Liang J.-H, Yao G.-W, Cao Z.-L. Struct. Chem. 2006; 17: 649
    • 9a Lakshmi NV, Perumal PT. Tetrahedron Lett. 2013; 54: 1817
    • 9b Lakshmi NV, Arun Y, Perumal PT. Tetrahedron Lett. 2011; 52: 3437
    • 9c Fruttero R, Ferrarotti B, Serafino A, Gasco A. Liebigs Ann. Chem. 1990; 335
    • 9d Canonne P, Thibeault D, Fytas G. Tetrahedron 1986; 42: 4203
    • 9e Tu S, Zhang J, Jia R, Jiang B, Zhang Y, Jiang H. Org. Biomol. Chem. 2007; 5: 1450