Synlett 2015; 26(17): 2457-2461
DOI: 10.1055/s-0035-1560478
letter
© Georg Thieme Verlag Stuttgart · New York

Chemoselective Two-Directional Reaction of Bifunctionalized Substrates: Formal Ketal-Selective Mukaiyama Aldol Type Reaction

Hikaru Yanai*
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan   Email: yanai@toyaku.ac.jp   Email: tmatsumo@toyaku.ac.jp
,
Yuichi Sasaki
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan   Email: yanai@toyaku.ac.jp   Email: tmatsumo@toyaku.ac.jp
,
Yuki Yamamoto
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan   Email: yanai@toyaku.ac.jp   Email: tmatsumo@toyaku.ac.jp
,
Takashi Matsumoto*
School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan   Email: yanai@toyaku.ac.jp   Email: tmatsumo@toyaku.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 July 2015

Accepted after revision: 12 August 2015

Publication Date:
09 September 2015 (online)


Abstract

In the presence of an acidic zwitterion bearing a highly stabilized carbanion, reactions of ω,ω-dialkoxy carbonyl compounds with ketene silyl acetals (KSA) resulted in an unusual molecular transformation; substitution reaction with the KSA at the ketal moiety and simultaneous silylative acetalization of the ketone moiety.

Supporting Information

 
  • References and Notes

    • 1a Trost BM. Science 1991; 254: 1471
    • 1b Wender PA, Verma VA, Paxton TJ, Pillow TH. Acc. Chem. Res. 2008; 41: 40
    • 1c Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
    • 2a Poss CS, Schreiber SL. Acc. Chem. Res. 1994; 27: 9
    • 2b Magnuson SR. Tetrahedron 1995; 51: 2167
    • 2c Vrettou M, Gray AA, Brewer AR. E, Barrett AG. M. Tetrahedron 2007; 63: 1487
    • 3a Fujioka H, Kitagawa H, Matsunaga N, Nagatomi Y, Kita Y. Tetrahedron Lett. 1996; 37: 2245
    • 3b Fujioka H, Ohba Y, Hirose H, Murai K, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 734
  • 4 For a recent review, see: Matsuo J, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109

    • For selected examples, see:
    • 5a Mukaiyama T, Narasaka K, Banno K. Chem. Lett. 1973; 1011
    • 5b Noyori R, Yokoyama K, Sakata J, Kuwajima I, Nakamura E, Shimizu M. J. Am. Chem. Soc. 1977; 99: 1265
    • 5c Denmark SE, Fan Y. J. Am. Chem. Soc. 2002; 124: 4233
    • 5d Oisaki K, Zhao D, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2006; 128: 7164
    • 6a Mukaiyama T, Ohno T, Han JS, Kobayashi S. Chem. Lett. 1991; 949
    • 6b Otera J, Chen J. Synlett 1996; 321
    • 6c Ooi T, Tayama E, Takahashi M, Maruoka K. Tetrahedron Lett. 1997; 38: 7403
  • 7 Yanai H, Ishii N, Matsumoto T, Taguchi T. Asian J. Org. Chem. 2013; 2: 989
  • 8 Yanai H, Yoshino T, Fujita M, Fukaya H, Kotani A, Kusu F, Taguchi T. Angew. Chem. Int. Ed. 2013; 52: 1560

    • As catalytically active species, silyl methanide species generated by the C-silylation reaction of the counter carbanion was considerable. See:
    • 9a Takahashi A, Yanai H, Taguchi T. Chem. Commun. 2008; 2385
    • 9b Yanai H, Takahashi A, Taguchi T. Chem. Commun. 2010; 46: 8728
    • 9c Hiraiwa Y, Ishihara K, Yamamoto H. Eur. J. Org. Chem. 2006; 1837

      For selected examples on in situ generation of silicon Lewis acids, see:
    • 10a García-García P, Lay F, García-García P, Rabalakos C, List B. Angew. Chem. Int. Ed. 2009; 48: 4363
    • 10b Yamamoto H, Boxer MB. J. Am. Chem. Soc. 2006; 128: 48
    • 10c Inagawa K, Takasu K, Ihara M. J. Am. Chem. Soc. 2005; 127: 3668
  • 11 Li W.-DZ, Zhang X.-X. Org. Lett. 2002; 4: 3485
    • 12a Yanai H, Ogura H, Fukaya H, Kotani A, Kusu F, Taguchi T. Chem. Eur. J. 2011; 17: 11747
    • 12b Zhang M, Sonoda T, Shiota Y, Mishima M, Yanai H, Fujita M, Taguchi T. J. Phys. Org. Chem. 2015; 28: 181

      Other examples on carbon acid catalysis, see:
    • 13a Ishihara K, Hasegawa A, Yamamoto H. Angew. Chem. Int. Ed. 2001; 40: 4077
    • 13b Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H. Org. Lett. 2006; 8: 3175
    • 13c Saadi J, Akakura M, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 14248
  • 14 Stern A, Swenton JS. J. Org. Chem. 1987; 52: 2763
  • 15 Under similar conditions, perfect carbonyl selectivity was observed in the Mukaiuyama aldol reaction of benzaldehyde and its dimethyl acetal with 5a. Likewise, the reaction of 1,4-dioxaspiro[4.5]decan-8-one, which was a cyclic ketal derivative of 1a, proceeded in a carbonyl selective manner.
  • 16 By 13C NMR study, it was indicated that silyl carboxonium was higher electrophilic compared with methylated one, see: Olah GA, Wang Q, Li X, Rasul G, Prakash GK. S. Macromolecules 1996; 29: 1857
  • 17 Typical Procedure (Table 2, Entry 1) To a solution of 5,5-dimethoxyhexan-2-one (1c, 80.1 mg, 0.501 mmol) and zwitterion 3 (2.6 mg, 5.0 μmol) in Et2O (1.5 mL) was added a solution of tert-butyl[(1-ethoxyvinyl)oxy]dimethylsilane (5a, 121 mg, 0.598 mmol) in Et2O (0.5 mL) at 0 °C. After being stirred for 20 min at 0 °C, the reaction was quenched by treatment with Et3N (0.3 mL), then it was concentrated under reduced pressure. The resulting residue was dissolved in a mixed solvent of acetone, H2O, and AcOH (1:1:1 v/v, 3.0 mL). This mixture was stirred for 30 min at r.t. After usual extractive workup, the obtained residue was purified by column chromatography on silica gel (hexane–EtOAc, 3:1) to give ethyl 3-methoxy-3-methyl-6-oxoheptanoate (9c) in 87% yield (94.1 mg, 0.436 mmol); colorless oil. IR (neat): ν = 2980, 2947, 2910, 1728, 1717, 1365, 1182, 1075, 1034 cm–1. 1H NMR (400 MHz, CD3CN): δ = 1.19 (3 H, t, J = 7.2 Hz), 1.19 (3 H, s), 1.71–1.85 (2 H, m), 2.08 (3 H, s), 2.41 (1 H, d, J = 13.7 Hz), 2.46 (2 H, t, J = 8.0 Hz), 2.47 (1 H, d, J = 13.7 Hz), 3.11 (3 H, s), 4.06 (2 H, q, J = 7.2 Hz). 13C NMR (100 MHz, CD3CN): δ = 13.5, 22.1, 29.1, 31.0, 37.3, 42.5, 48.6, 60.0, 74.9, 170.5, 208.2. MS (ESI-TOF): m/z = 239 [M + Na]+. HRMS: m/z calcd for C11H20O4 [M + Na]+: 239.1259; found: 239.1259. Anal. Calcd for C11H20O4: C, 61.09; H, 9.32. Found: C, 60.91; H, 9.29.