Synthesis 2016; 48(08): 1202-1216
DOI: 10.1055/s-0035-1560419
paper
© Georg Thieme Verlag Stuttgart · New York

Preparation of 2,3,3-Triarylacrylic Acid Esters Using Suzuki–Miyaura Coupling Reactions

Sébastien Cardinal
Département de Chimie and PROTEO, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V OA6, Canada   Email: Normand.voyer@chm.ulaval.ca
,
Normand Voyer*
Département de Chimie and PROTEO, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V OA6, Canada   Email: Normand.voyer@chm.ulaval.ca
› Author Affiliations
Further Information

Publication History

Received: 11 January 2016

Accepted: 24 January 2016

Publication Date:
17 February 2016 (online)


Abstract

We report here a new strategy to produce 2,3,3-triarylacrylic acid esters, a class of 1,2,2-triarylethene compounds with an α,β-unsaturated ester functionality. Our approach requires the preparation of a gem-dibromoalkene precursor from an α-keto ester, followed by the installation of two aryl groups by Suzuki–Miyaura coupling reactions on the two C–Br bonds. Many 2,3,3-triarylacrylic acid esters with one, two, or three different aryl groups were obtained with complete regio- and stereocontrol in most cases.

Supporting Information

 
  • References

    • 1a Doni E, Zhou S, Murphy JA. Molecules 2015; 20: 1755 ; http://www.mdpi.com/journal/molecules
    • 1b Takeda Y, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2007; 46: 8659
    • 1c Uddin MJ, Rao PN. P, McDonald R, Knaus EE. Bioorg. Med. Chem. Lett. 2005; 15: 439
    • 1d Liu XY, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2004; 43: 879
    • 1e Hellwinkel D, Goke K, Karle R. Synthesis 1994; 973
    • 2a Shoda T, Okuhira K, Kato M, Demizu Y, Inoue H, Naito M, Kurihara M. Bioorg. Med. Chem. 2014; 24: 87
    • 2b Ganapathy D, Sekar G. Org. Lett. 2014; 16: 3856
    • 2c Christodoulou MS, Fokialakis N, Passarella D, Garcia-Argaez AN, Gia OM, Pongratz I, Dalla Via L, Haroutounian SA. Bioorg. Med. Chem. 2013; 21: 4120
    • 2d Abdellatif KR. A, Belal A, Omar HA. Bioorg. Med. Chem. Lett. 2013; 23: 4960
    • 2e Matsumoto K, Shindo M. Adv. Synth. Catal. 2012; 354: 642
    • 2f Shiina I, Sano Y, Nakata K, Suzuki M, Yokoyama T, Sasaki A, Orikasa T, Miyamoto T, Ikekita M, Nagahara Y, Hasome Y. Bioorg. Med. Chem. 2007; 15: 7599
    • 2g Jordan VC. Nat. Rev. Drug Discovery 2003; 2: 205
    • 2h Itami K, Kamei T, Yoshida J. J. Am. Chem. Soc. 2003; 125: 14670
    • 3a Nagata T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 8960
    • 3b Zhu Y, Sun P, Yang HL, Lu LH, Yan H, Creus M, Mao JC. Eur. J. Org. Chem. 2012; 4831
    • 3c Itami K, Tonogaki K, Nokami T, Ohashi Y, Yoshida J. Angew. Chem. Int. Ed. 2006; 45: 2404
    • 3d Itami K, Ohashi Y, Yoshida J. J. Org. Chem. 2005; 70: 2778
  • 4 Cardinal S, Voyer N. Tetrahedron Lett. 2013; 54: 5178

    • Strategies involving the uncatalyzed double addition of an organometallic compound on an alkyne:
    • 5a Zhou C, Larock RC. J. Org. Chem. 2006; 71: 3184
    • 5b Shimizu K, Takimoto M, Mori M, Sato Y. Synlett 2006; 3182
    • 5c Zhou C, Larock RC. Org. Lett. 2005; 7: 259
    • 5d Takahashi T, Xi C, Ura Y, Nakajima K. J. Am. Chem. Soc. 2000; 122: 3228
    • 5e Oda H, Morishita M, Fugami K, Sano H, Kosugi M. Chem. Lett. 1996; 25: 811
    • 5f Ossor H, Pfeffer M. J. Chem. Soc., Chem. Commun. 1985; 1540

      Examples involving the palladium-catalalyzed coupling of an internal alkyne with an aryl iodide and an arylboronic acid:
    • 6a Scanlan TS, Iijima T. US 8236987, 2012
    • 6b Jiang H.-F, Xu Q.-X, Wang AZ. J. Supercrit. Fluids 2009; 49: 377
    • 6c Zhou C, Larock RC. J. Org. Chem. 2005; 70: 3765
    • 6d Zhou C, Emrich DE, Larock RC. Org. Lett. 2003; 5: 1579

      Miscellaneous methods starting from different starting materials:
    • 7a Nagao K, Ohmiya H, Sawamura M. Org. Lett. 2015; 17: 1304
    • 7b Zhu D, Wu Y, Wu B, Luo B, Ganesan A, Wu F.-H, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 2350
    • 7c Oliva-Madrid M.-J, García-López J.-A, Saura-Llamas I, Bautista D, Vicente J. Organometallics 2014; 33: 19
    • 7d Zhou L, Zhang W, Jiang H. Sci. China, Ser. B: Chem. 2008; 51: 241
    • 7e Nakatsuji H, Ashida Y, Hori H, Sato Y, Honda A, Taira M, Tanabe Y. Org. Biomol. Chem. 2015; 13: 8205
    • 7f Banert K, Hagedorn M, Pester T, Siebert N, Staude C, Tchernook I, Rathmann K, Hollóczki O, Friedrich J. Chem. Eur. J. 2015; 21: 14911
  • 8 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
  • 9 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769

    • Selected examples in medicinal chemistry:
    • 10a Novoa A, Pellegrini-Moise N, Bourg S, Thoret S, Dubois J, Aubert G, Cresteil T, Chapleur Y. Eur. J. Med. Chem. 2011; 46: 3570
    • 10b Koh M, Park SB. Mol. Diversity 2011; 15: 69
    • 10c Bauer A, Miller MW, Vice SF, McCombie SW. Synlett 2001; 254

      Selected examples in material science:
    • 11a Zeng ZB, Sung YM, Bao NN, Tan D, Lee R, Zafra JL, Lee BS, Ishida M, Ding J, Navarrete JT. L, Li Y, Zeng WD, Kim D, Huang KW, Webster RD, Casado J, Wu JS. J. Am. Chem. Soc. 2012; 134: 14513
    • 11b Pola S, Kuo CH, Peng WT, Islam MM, Chao I, Tao YT. Chem. Mater. 2012; 24: 2566
    • 11c Loo YL, Hiszpanski AM, Kim B, Wei SJ, Chiu CY, Steigerwald ML, Nuckolls C. Org. Lett. 2010; 12: 4840
    • 11d Ramana CV, Reddy BK. K, Reddy CN, Gonnade RG, Gurjar MK. Synlett 2007; 127
    • 11e Bures F, Schweizer WB, May JC, Boudon C, Gisselbrecht JP, Gross M, Biaggio I, Diederich F. Chem. Eur. J. 2007; 13: 5378
    • 12a Kotek V, Dvořáková H, Tobrman T. Org. Lett. 2015; 17: 608
    • 12b Gu S, Xu H, Zhang N, Chen W. Chem. Asian. J. 2010; 5: 1677
  • 13 Li YH, Zhao XM, Lu L. J. Fluorine Chem. 2004; 125: 1821
    • 14a Chelucci G, Capitta F, Baldino S, Pinna GA. Tetrahedron Lett. 2007; 48: 6514
    • 14b Molander GA, Yokoyama Y. J. Org. Chem. 2006; 71: 2493
    • 14c Shen W. Synlett 2000; 737
    • 14d Roush WR, Brown BB, Drozda SE. Tetrahedron Lett. 1988; 29: 3541
  • 15 Shimizu M, Takeda Y, Hiyama T. Bull. Chem. Soc. Jpn. 2011; 84: 1339
    • 16a Jiao J, Hyodo K, Hu H, Nakajima K, Nishihara Y. J. Org. Chem. 2014; 79: 285
    • 16b Shimizu M, Nakamaki C, Shimono K, Schelper M, Kurahashi T, Hiyama T. J. Am. Chem. Soc. 2005; 127: 12506
  • 17 Desai NB, McKelvie N, Ramirez F. J. Am. Chem. Soc. 1962; 84: 1745
  • 18 Preparation of compound 2 as well as synthesis of precursors 8 and 12 has been previously reported by our group.4 They are presented in this paper to show the complete current scope of this synthetic strategy.
  • 20 Boudreault PL, Cardinal S, Voyer N. Synlett 2010; 2449
    • 21a Walker SD, Barder TE, Martinelli JR, Buchwald SL. Angew. Chem. Int. Ed. 2004; 43: 1871
    • 21b Barder TE, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4685
  • 22 Ritchie CD, Sager WF. Prog. Phys. Org. Chem. 1964; 2: 323
    • 23a de Vaal P, Dedieu A. J. Organomet. Chem. 1994; 478: 121
    • 23b Amatore C, Bensalem S, Ghalem S, Jutand A. J. Organomet. Chem. 2004; 689: 4642
    • 24a Krijnen ES, Zuilhof H, Lodder G. J. Org. Chem. 1994; 59: 8139
    • 24b Rossi R, Bellina F, Carpita A, Mazzarella F. Tetrahedron 1996; 52: 4095
    • 24c Shi J.-c, Zeng X, Negishi E.-i. Org. Lett. 2003; 5: 1825
    • 24d Simard-Mercier J, Jiang JL, Ho ML, Flynn AB, Ogilvie WW. J. Org. Chem. 2008; 73: 5899
  • 25 Zeng X, Hu Q, Qian M, Negishi E.-i. J. Am. Chem. Soc. 2003; 125: 13636
  • 26 For the synthesis of 2,3,3-triarylacrylic acid esters of Class D from trans vic-dibromoalkenes see: Zhou et al. 2008 (ref. 7d).
  • 27 CCDC 1410092, CCDC 1410093, CCDC 1410094, and CCDC 1410095 contain the supplementary crystallographic data for 24a, 32a, 32b, and 33a, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.