Synthesis 2016; 48(04): 588-594
DOI: 10.1055/s-0035-1560388
paper
© Georg Thieme Verlag Stuttgart · New York

A Facile Route to Ursodeoxycholic Acid Based on Stereocontrolled Conversion and Aggregation Behavior Research

Qian Dou
Department of Chemistry, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. of China   Email: [email protected]
,
Zhongliang Jiang*
Department of Chemistry, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 03 September 2015

Accepted after revision: 13 November 2015

Publication Date:
15 December 2015 (online)


Abstract

A facile route to ursodeoxycholic acid (UDCA) and its aggregation behavior in aqueous phase solution, which is rarely known, are reported. The starting material, hyodeoxycholic acid (HDCA), is a relatively less expensive material and more easily obtained compared with chenodeoxycholic acid (CDCA). A facile route was developed to synthesize UDCA from HDCA with a Shapiro reaction as the key step and in 26% overall yield. A new strategy using organosilane reagent considering its stability, nontoxicity, and abundance in nature was carried out for a more rapid route and higher yield. It was found that the critical micelle concentration value, which is a critical value for surfactants of bile salts, was influenced by the number of hydroxyl groups.

Supporting Information

 
  • References

  • 1 Kritchevsky D. The Bile Acids - Chemistry, Physiology and Metabolism. Plenum Press; New York: 1971
  • 2 Salen G, Colalillo A, Verga D, Bagan E, Tint GS, Shefer S. Gastroenterology 1980; 78: 1412
  • 3 Crosignani A, Setchell KD, Invernizzi P, Larghi A, Rodrigues CM, Podda M. Clin. Pharmacokinet. 1996; 30: 333
  • 4 Ren J, Wang YC, Wang JL, Lin J, Wei K, Huang R. Steroids 2013; 78: 53
  • 5 Dosa PI, Ward T, Castro RE, Rodrigues CM, Steer CJ. ChemMedChem 2013; 8: 1002
  • 6 Zheng MM, Wang RF, Li CX, Xu JH.  Proc. Biochem. 2015; 50: 598
  • 7 Eggert T, Bakonyi D, Hummel W. J. Biotechnol. 2014; 191: 11
  • 8 Zhou WS, Wang ZQ, Jiang B. J. Chem. Soc., Perkin Trans. 1 1990; 1
  • 9 Pedrini P, Andreotti E, Guerrini A, Dean M, Fantin G, Giovannini PP.  Steroids 2006; 71: 189
  • 10 Giovannini PP, Grandini A, Perrone D, Pedrini P, Fantin G, Fogagnolo M. Steroids 2008; 73: 1385
  • 11 Medici A, Pedrini P, Bianchini E, Fantin G, Guerrini A, Natalini B, Pellicciari R. Steroids 2002; 67: 51
  • 12 Hohenberg P, Kohn W. Phys. Rev. 1964; 136: 864
  • 13 Levy M. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 6062
  • 14 Sousa AM, Coutinho WS, Lima AF, Lalic MV. J. Chem. Phys. 2015; 142: 74703
  • 15 Zhou QH, Li YX. J. Am. Chem. Soc. 2015; 137: 10182
  • 16 Visitsatthawong S, Chenprakhon P, Chaiyen P, Surawatanawong P. J. Am. Chem. Soc. 2015; 137: 9363
  • 17 Samrat M, Uday M. Org. Lett. 2004; 6: 31
  • 18 Karamanis P, Pouchan C. J. Phys. Chem. C 2012; 116: 11808
  • 19 Wang Y, Cheng LT. J. Phys. Chem. 1992; 96: 1530
  • 20 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA. Gaussian 09, Revision A.1 . Gaussian, Inc; Pittsburgh: 2009
  • 21 Wang Q, Zhao J, Wang XF. J. Phys. Chem. A 2015; 119: 2244
  • 22 Dai YF, Li ZY, Yang JL. J. Phys. Chem. C 2014; 118: 3313
  • 23 Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature 1994; 367: 630
  • 24 Guillemette A, Francois A. German Patent DE2950481, 1980
  • 25 Giordano C, Perdoncin G, Castaldi G. Angew. Chem. Int. Ed. 1985; 24: 499
  • 26 Castaldi G, Perdoncin G, Giordano C, Minisci F. Tetrahedron Lett. 1983; 24: 2487