Synthesis 2016; 48(03): 448-454
DOI: 10.1055/s-0035-1560373
paper
© Georg Thieme Verlag Stuttgart · New York

1,2-Hydride Migration in Dialkyl α-Diazophosphonates Catalyzed by [Cu(MeCN)4]PF6: A Novel Approach to β-Amino (E)-Enylphosphonates

Haihong Ge
a   State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China   Email: miaozhiwei@nankai.edu.cn
,
Shuang Liu
a   State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China   Email: miaozhiwei@nankai.edu.cn
,
Yan Cai
a   State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China   Email: miaozhiwei@nankai.edu.cn
,
Yuchao Sun
a   State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China   Email: miaozhiwei@nankai.edu.cn
,
Zhiwei Miao*
a   State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Weijin Road 94, Tianjin 300071, P. R. of China   Email: miaozhiwei@nankai.edu.cn
b   Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94, Tianjin 300071, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 22 July 2015

Accepted after revision: 16 October 2015

Publication Date:
13 November 2015 (online)


Abstract

The regiospecific and stereoselective 1,2-migration reaction of dialkyl α-diazophosphonates for the synthesis of β-amino (E)-enylphosphonates is developed utilizing tetrakis(acetonitrile)copper(I) hexafluorophosphate [Cu(MeCN)4PF6] as the catalyst and N,N-dimethylformamide as an additive. A possible mechanism for the 1,2-migration reaction involving a metal carbene is presented. An investigation on the E/Z isomer selectivity of this process demonstrates that steric factors play an important role on the outcome. This process provides a straightforward access to β-amino (E)-enylphosphonates in moderate to good yields.

Supporting Information

 
  • References


    • For selected examples on carbenoid C–H insertion, see:
    • 1a Doyle MP, Ratnikov M, Liu Y. Org. Biomol. Chem. 2011; 9: 4007
    • 1b DeAngelis A, Shurtleff VW, Dmitrenko O, Fox JM. J. Am. Chem. Soc. 2011; 133: 1650
    • 1c Wolckenhauser SA, Devlin AS, Du Bois J. Org. Lett. 2007; 9: 4363
    • 1d Davies HM. L. Angew. Chem. Int. Ed. 2006; 45: 6422
    • 1e Davies HM. L, Townsend RJ. J. Org. Chem. 2001; 66: 6595

    • For selected examples of carbenoid O–H insertions, see:
    • 1f Zhu SF, Song XG, Li Y, Cai Y, Zhou QL. J. Am. Chem. Soc. 2010; 132: 16374
    • 1g Zhu SF, Cha Y, Mao HX, Xie JH, Zhou QL. Nat. Chem. 2010; 2: 546
    • 1h Zhu SF, Chen C, Cai Y, Zhou QL. Angew. Chem. Int. Ed. 2008; 47: 932
    • 1i Chen C, Zhu SF, Liu B, Wang LX, Zhou QL. J. Am. Chem. Soc. 2007; 129: 12616
    • 1j Maier TC, Fu GC. J. Am. Chem. Soc. 2006; 128: 4594

    • For selected examples of carbenoid N–H insertions, see:
    • 1k Zhu SF, Xu B, Wang GP, Zhou QL. J. Am. Chem. Soc. 2012; 134: 436
    • 1l Hou ZR, Wang J, He P, Wang J, Qin B, Liu XH, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2010; 49: 4763
    • 1m Liu B, Zhu SF, Zhang W, Chen C, Zhou QL. J. Am. Chem. Soc. 2007; 129: 5834
    • 1n Moody CJ. Angew. Chem. Int. Ed. 2007; 49: 9148

    • For selected examples of carbenoid Si–H insertions, see:
    • 1o Zhang YZ, Zhu SF, Wang LX, Zhou QL. Angew. Chem. Int. Ed. 2008; 47: 8496

    • For selected examples of carbenoid S–H insertions, see:
    • 1p Zhang YZ, Zhu SF, Cai Y, Mao HX, Zhou QL. Chem. Commun. 2009; 5362

      For selected recent examples, see:
    • 2a Li ZJ, Parr BT, Davies HM. L. J. Am. Chem. Soc. 2012; 134: 10942
    • 2b Xu XF, Hu WH, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2011; 50: 11152
    • 2c Li ZJ, Davies HM. L. J. Am. Chem. Soc. 2010; 132: 396
    • 2d DeAngelis A, Taylor MT, Fox JM. J. Am. Chem. Soc. 2009; 131: 1101
    • 2e Huang HX, Guo X, Hu WH. Angew. Chem. Int. Ed. 2007; 46: 1337

      For reviews, see:
    • 3a Doyle MP, Duffy R, Ratnikov M, Zhou L, Ye T. Chem. Rev. 2010; 110: 704
    • 3b Padwa A. Chem. Soc. Rev. 2009; 38: 3072
    • 3c Doyle MP, McKervey MA, Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides . Wiley-Interscience; New York: 1998: 433-436
    • 4a Zhou L, Liu YZ, Zhang Y, Wang JB. Chem. Commun. 2011; 47: 3622
    • 4b Xu F, Zhang SW, Wu XN, Liu Y, Shi WF, Wang JB. Org. Lett. 2006; 8: 3207
    • 4c Xiao FP, Wang JB. J. Org. Chem. 2006; 71: 5789
    • 4d Xu F, Shi WF, Wang JB. J. Org. Chem. 2005; 70: 4191
    • 4e Jiang N, Qu ZH, Wang JB. Org. Lett. 2001; 3: 2989
    • 4f DeAngelis A, Dmitrenko O, Fox JM. J. Am. Chem. Soc. 2011; 134: 11035
    • 4g Qin CM, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 14516
    • 4h Dudones JD, Sampson P. Tetrahedron 2000; 56: 9555
    • 4i Otte M, Kuijpers PF, Troeppner O, Ivanović-Burmazović I, Reek JN. H, De Bruin B. Chem. Eur. J. 2013; 19: 10170
    • 5a Taber DF, Hennessy MJ, Louey JP. J. Org. Chem. 1992; 57: 436
    • 5b Taber DF, Herr RJ, Pack SK, Geremia JM. J. Org. Chem. 1996; 61: 2908
    • 6a Zhu SF, Chen WQ, Zhang QQ, Mao HX, Zhou QL. Synlett 2011; 919
    • 6b Zhou CY, Wang JC, Wei JH, Xu ZJ, Guo Z, Low KH, Che CM. Angew. Chem. Int. Ed. 2012; 51: 11376
    • 6c Briones JF, Davies HM. L. Org. Lett. 2011; 13: 3984
    • 6d Lindsay VN. G, Fiset D, Gritsch PJ, Azzi S, Charette AB. J. Am. Chem. Soc. 2013; 135: 1463
    • 6e Davies HM. L, Lee GH. Org. Lett. 2004; 6: 2117
    • 6f Zhang H, Wen XJ, Gan LH, Peng YG. Org. Lett. 2012; 14: 2126
    • 6g Hashimoto T, Maruoka K. J. Am. Chem. Soc. 2007; 129: 10054
  • 7 Cai Y, Lu YC, Yu CB, Lyu HR, Miao ZW. Org. Biomol. Chem. 2013; 11: 5491
  • 8 Cai Y, Lyu HR, Yu CB, Miao ZW. Adv. Synth. Catal. 2014; 356: 596

    • See the following reviews:
    • 9a Palacios F, Alonso C, de los Santos JM. Chem. Rev. 2005; 105: 899
    • 9b Palacios F, Alonso C, de los Santos JM In Enantioselective Synthesis of β-Amino Acids . 2nd ed.; Juaristi E, Soloshonok VA. Wiley-VCH; New York: 2005: 277-317
    • 10a Palacios F, Ochoa de Retana AM, Pascual S, Oyarzabal J. J. Org. Chem. 2004; 69: 8767
    • 10b Panarina AE, Dogadina AV, Zakharov VI, Ionin BI. Tetrahedron Lett. 2001; 42: 4365
    • 10c Gulevich AV, Helan V, Wink DJ, Gevorgyan V. Org. Lett. 2013; 15: 956
  • 11 Cai Y, Ge HH, Yu CB, Sun WZ, Zhan JC, Miao ZW. RSC Adv. 2014; 4: 21492
    • 12a Kong SS, Fan WD, Wu GP, Miao ZW. Angew. Chem. Int. Ed. 2012; 51: 8864
    • 12b Fang ZJ, Yang HH, Miao ZW, Chen RY. Helv. Chim. Acta 2011; 94: 1586
    • 12c Wang YD, Wang YY, Yu JP, Miao ZW, Chen RY. Chem. Eur. J. 2009; 15: 9290
    • 12d Wang YD, Wang F, Wang YY, Miao ZW, Chen RY. Adv. Synth. Catal. 2008; 350: 2339

      For selected examples, see:
    • 13a Cao ZY, Zhou F, Yu YH, Zhou J. Org. Lett. 2013; 15: 42
    • 13b Wang J, Boyarskikh V, Rainier JD. Org. Lett. 2011; 13: 700
    • 13c Li J, Liao SH, Xiong H, Zhou YY, Sun XL, Zhang Y, Zhou XG, Tang Y. Angew. Chem. Int. Ed. 2012; 51: 8838
    • 13d Song XG, Zhu SF, Xie XL, Zhou QL. Angew. Chem. Int. Ed. 2013; 52: 2555
  • 14 Bachmann S, Fielenbach D, Jørgensen KA. Org. Biomol. Chem. 2004; 2: 3044
  • 15 Taber DF, You KK, Rheingold AL. J. Am. Chem. Soc. 1996; 118: 547
  • 16 Doyle MP, Westrum LJ, Wolthuis WN. E, See MM, Boone WP, Bagheri V, Pearson MM. J. Am. Chem. Soc. 1993; 115: 958
  • 17 Lowry TH, Richardson KS. Mechanism and Theory in Organic Chemistry . 3rd ed. Harper Collins Publishers; New York: 1987
  • 18 Perrin DD, Armarego WL. F. Purification of Laboratory Chemicals . 3rd ed. Pergamon; Oxford: 1988