Synlett 2016; 27(04): 546-550
DOI: 10.1055/s-0035-1560198
cluster
© Georg Thieme Verlag Stuttgart · New York

Diastereo- and Enantioselective Assembly of Spirooxindole Tetrahydroquinoline Skeletons through Asymmetric Binary Acid Catalyzed Hydride Transfer–Cyclization

Zhenjun Mao
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Email: lxfok@zju.edu.cn
,
Fan Mo
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Email: lxfok@zju.edu.cn
,
Xufeng Lin*
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. of China   Email: lxfok@zju.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 05 June 2015

Accepted after revision: 30 July 2015

Publication Date:
08 September 2015 (online)

Abstract

An efficient binary acid catalyzed asymmetric intramolecular tandem 1,5-hydride transfer/ring-closure reaction was achieved. The process is catalyzed by the combination of a chiral spirocyclic phospho­ric acid and magnesium chloride to afford structurally diverse spirooxindole tetrahydroquinolines in good yields with high diastereo- and enantioselectivities.

Supporting Information

 
  • References and Notes

    • 1a Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
    • 1b Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 1c Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
    • 1d Zhou F, Liu YL, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 1e Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
    • 2a Trost BM, Brennan MK. Synthesis 2009; 3003
    • 2b Cheng D, Ishihara Y, Tan B, Barbas CF. III. ACS Catal. 2014; 4: 743
    • 2c Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 2d Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 2e Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 2f Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023

      For pioneering work on the intramolecular tandem 1,5-hydride transfer/ring-closure reaction, see:
    • 3a Verboom W, Reinhoudt DN, Visser R, Harkema S. J. Org. Chem. 1984; 49: 269
    • 3b Nijhuis WH. N, Verboom W, Reinhoudt DN. J. Am. Chem. Soc. 1987; 109: 3136

    • For selected reviews, see:
    • 3c Tobisu M, Chatani N. Angew. Chem. Int. Ed. 2006; 45: 1683
    • 3d Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 3e Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 3f Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 3g Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
    • 3h Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
    • 3i Wang L, Xiao J. Adv. Synth. Catal. 2014; 356: 1137

    • For selected enantioselective versions, see:
    • 3j Murarka S, Deb I, Zhang C, Seidel D. J. Am. Chem. Soc. 2009; 131: 13226
    • 3k Kang YK, Kim SM, Kim DY. J. Am. Chem. Soc. 2010; 132: 11847
    • 3l Zhou G, Liu F, Zhang J. Chem. Eur. J. 2011; 17: 3101
    • 3m He Y.-P, Du Y.-L, Luo S.-W, Gong LZ. Tetrahedron Lett. 2011; 52: 7064
    • 3n Jiao Z.-W, Zhang S.-Y, He C, Tu Y.-Q, Wang S.-H, Zhang F.-M, Zhang Y.-Q, Li H. Angew. Chem. Int. Ed. 2012; 51: 8811
  • 4 Han Y.-Y, Han W.-Y, Hou X, Zhang X.-M, Yuan W.-C. Org. Lett. 2012; 14: 4054

    • For pioneering work on the use of chiral phosphoric acids as Brønsted acid catalysts, see:
    • 5a Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 5b Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For recent reviews of chiral phosphoric acid catalysis, see:
    • 5c Akiyama T. Chem. Rev. 2007; 107: 5744
    • 5d Terada M. Chem. Commun. 2008; 4097
    • 5e Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 5f You S, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 5g Terada M. Synthesis 2010; 1929
    • 5h Kampen D, Reisinger CM, List B. Top. Curr. Chem. 2010; 291: 395
    • 5i Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 5j Yu J, Shi F, Gong LZ. Acc. Chem. Res. 2011; 44: 1156
    • 5k Čorić I, Vellalath S, Müller S, Cheng X, List B. Top. Organomet. Chem. 2013; 44: 165
    • 5l Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 6 Cao W, Liu X, Guo J, Kin L, Feng X. Chem. Eur. J. 2015; 21: 1632

    • For asymmetric binary acid catalysis, see:
    • 7a Lv J, Zhong L, Luo S, Cheng J.-P. Org. Lett. 2010; 12: 1096
    • 7b Lv J, Zhong L, Zhou Y, Nie Z, Luo S, Cheng J.-P. Angew. Chem. Int. Ed. 2011; 50: 6610
    • 7c Lv J, Zhong L, Hu S, Cheng J.-P, Luo S. Chem. Eur. J. 2012; 18: 799
    • 7d Chen L, Zhong L, Lv J, Hu S, Cheng J.-P, Luo S. Chem. Eur. J. 2012; 18: 8891
    • 7e Zhong L, Chen L, Lv J, Cheng J.-P, Luo S. Chem. Asian J. 2012; 7: 2569
    • 7f Lv J, Zhong L, Luo S, Cheng J.-P. Angew. Chem. Int. Ed. 2013; 52: 9786

    • For recent reviews of combining transition metal catalysis and organocatalysis, see:
    • 7g Park YJ, Park J.-W, Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 7h Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 7i Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
    • 7j Zhou J. Chem. Asian J. 2010; 5: 422
    • 7k Stegbauer L, Sladojevich F, Dixon D. J. Chem. Sci. 2012; 3: 942
    • 7l Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 7m Qin Y, Lv J, Luo S. Tetrahedron Lett. 2014; 55: 551

      For selected examples on SPAs, see:
    • 8a Xu F, Huang D, Han C, Shen W, Lin XF, Wang Y. J. Org. Chem. 2010; 75: 8677
    • 8b Čorić I, Müller S, List B. J. Am. Chem. Soc. 2010; 132: 17370
    • 8c Xing C, Liao Y, Ng J, Hu Q. J. Org. Chem. 2011; 76: 4125
    • 8d Xu B, Zhu S, Xie X, Shen J, Zhou Q. Angew. Chem. Int. Ed. 2011; 50: 11483
    • 8e Rubush D, Morges M, Rose B, Thamm D, Rovis T. J. Am. Chem. Soc. 2012; 134: 13554
    • 8f Chen Z, Wang B, Wang Z, Zhu G, Sun J. Angew. Chem. Int. Ed. 2013; 52: 2027
    • 8g Wu J, Wang Y, Drljevic A, Rauniyar V, Phipps R, Toste FD. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 13729
    • 8h Huang D, Li X, Xu F, Li L, Lin X. ACS Catal. 2013; 3: 2244
    • 8i Li X, Chen D, Gu H, Lin XF. Chem. Commun. 2014; 50: 7538
    • 8j Wang Y, Tu M.-S, Shi F, Tu S.-J. Adv. Synth. Catal. 2014; 356: 2009
    • 8k Gualtierotti J.-B, Pasche D, Wang Q, Zhu JP. Angew. Chem. Int. Ed. 2014; 53: 9926
    • 8l Gobé V, Guinchard X. Org. Lett. 2014; 16: 1924
    • 8m Kisan HM, Sunoj RB. Chem. Commun. 2014; 50: 14639
    • 8n Wang S.-G, Yin Q, Zhuo CX, You S.-L. Angew. Chem. Int. Ed. 2015; 54: 647
    • 8o Zhang Y, Zhao R, Bao RL, Shi L. Eur. J. Org. Chem. 2015; 3344
    • 8p Li M, Chen D, Luo S, Wu X. Tetrahedron: Asymmetry 2015; 26: 219
    • 8q Rong Z, Zhang Y, Hong R, Pan H, Zhao Y. J. Am. Chem. Soc. 2015; 137: 4944
    • 9a Mori K, Ehara K, Kurihara K, Akiyama T. J. Am. Chem. Soc. 2011; 133: 6166
    • 9b He Y.-P, Wu H, Chen D.-F, Yu J, Gong L.-Z. Chem. Eur. J. 2013; 19: 5232
    • 9c Pan SC. Beilstein J. Org. Chem. 2012; 8: 1374
  • 10 CCDC-1059197 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk].
  • 11 General Procedure for the Synthesis of 3: Phosphoric acid catalyst 1i (10 mol%, 3.3 mg), a solution of MgCl2 in EtOH (2.5 mol%, 0.12 mg, 0.1 mL, 1.2 mg/mL), and 4 Å molecular sieves (15 mg) were added to a Schlenk-type flask and the mixture was dried under vacuum. Toluene (0.3 mL) was then added and the resulting mixture was stirred for 1 h under Ar. A solution of 2 in toluene (0.05 mmol, 0.4 mL) was added and the resulting mixture was heated to 80 °C until the starting material disappeared. The product was purified by silica gel column chromatography (EtOAc–PE, 1:4) to afford the desired product 3. Compound 3a: Yield: 92%; off-white solid; m.p. 149–150 °C; HPLC analysis: 90% ee {Chiralpak AD-H (hexane–i-PrOH, 90:10; 0.8 mL/min): tR = 12.4 (major), 16.8 (minor) min}; [α]D 20 42.9 (c = 1.2, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 7.96 (d, J = 8.0 Hz, 1 H), 7.29–7.20 (m, 2 H), 7.02 (d, J = 7.6 Hz, 1 H), 6.96–6.92 (m, 1 H), 6.67–6.63 (m, 1 H), 6.59 (d, J = 8.0 Hz, 1 H), 6.45 (dd, J = 7.6, 1.2 Hz, 1 H), 4.05 (s, 3 H), 3.77 (q, J = 9.6 Hz, 1 H), 3.54–3.44 (m, 1 H), 3.26–3.20 (m, 1 H), 2.75 (d, J = 15.6 Hz, 1 H), 1.92–1.81 (m, 3 H), 0.93–0.88 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 177.26, 151.34, 143.46, 139.02, 129.64, 128.39, 128.11, 127.99, 124.95, 124.51, 117.83, 115.90, 114.51, 110.26, 62.88, 53.94, 47.09, 46.79, 37.76, 27.04, 23.24. IR (film): 2965, 1760, 1738, 1604, 1479, 1462, 1360, 1287, 1243, 1160, 1072, 746 cm–1. HRMS (EI-TOF): m/z calcd for C21H20N2O3: 348.1474; found: 348.1476.