Synthesis 2015; 47(22): 3618-3628
DOI: 10.1055/s-0035-1560072
paper
Georg Thieme Verlag Stuttgart · New York

Asymmetric Organocatalytic Synthesis of Highly Functionalized Spirocyclohexane Indandiones via a One-Pot Michael/Michael/Aldol Sequence

Marcus Blümel
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Pankaj Chauhan
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Cornelia Vermeeren
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Angelika Dreier
b   Chemical Crystallography and Electron Microscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: lehmann@mpi-muelheim.mpg.de
,
Christian Lehmann
b   Chemical Crystallography and Electron Microscopy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: lehmann@mpi-muelheim.mpg.de
,
Dieter Enders*
a   Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 24 July 2015

Accepted: 27 July 2015

Publication Date:
14 August 2015 (online)


Abstract

The asymmetric organocatalytic one-pot Michael/Michael/ aldol reaction of trifluoromethyl-substituted 1,3-dicarbonyl compounds, nitroolefins, and 2-arylidene indandiones catalyzed sequentially by a cinchona-derived squaramide and DBU leads to spirocyclohexane-indan-1,3-diones bearing five adjacent stereogenic centers including a trifluoromethylated one in medium to very good yields and enantioselectivities, but generally in low to high diastereomeric ratios.

Supporting Information

 
  • References


    • For selected reviews and examples, see:
    • 1a Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 1b Walji AM. MacMillan DW. C. Synlett 2007; 1477
    • 1c Yu X. Wang W. Org. Biomol. Chem. 2008; 6: 2037
    • 1d Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 1e Albrecht Ł. Jiang H. Jørgensen KA. Angew. Chem. Int. Ed. 2011; 50: 8492
    • 1f Alemán J. Parra A. Jiang H. Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 1g Moyano A. Rios R. Chem. Rev. 2011; 111: 4703
    • 1h Loh CC. J. Enders D. Chem. Eur. J. 2012; 18: 10212
    • 1i Grossmann A. Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 1j Lu L.-Q. Chen J.-R. Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 1k Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 1l Goudedranche S. Raimondi W. Bugaut X. Constantieux T. Bonne D. Rodriguez J. Synthesis 2013; 45: 1909
    • 1m Wang Y. Xu P.-F. In Catalytic Cascade Reactions . Xu P.-F. Wang W. Wiley-VCH; Weinheim: 2013: 123
    • 1n Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
    • 1o Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
    • 2a Kamigakinai T. Nakashima M. Tani H. Japanese Patent JP 10101666 A2, 1998 ; Chem. Abstr. 1998, 129, 236773.
    • 2b Kamigaichi T. Nakashima M. Tani H. Japanese Patent JP 11158109 A2, 1999 ; Chem. Abstr. 1999, 131, 378444.
    • 2c Wilson KE. Tsou NN. Guan Z. Ruby CL. Pelaez F. Gorrochategui J. Vicente F. Onishi HR. Tetrahedron Lett. 2000; 41: 8705
  • 3 Urata H. Kinoshita A. Misono K. Bumpus FM. Husain A. J. Biol. Chem. 1990; 265: 22348
  • 4 Pizzirani D. Roberti M. Grimaudo S. Di Christina A. Pipitone RM. Tolomeo M. Recanatini M. J. Med. Chem. 2009; 52: 6936

    • For recent reviews on the importance of fluorinated compounds in pharmaceutical applications and their synthesis, see:
    • 5a Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 5b Huang Y.-Y. Yang X. Chen Z. Verpoort F. Shibata N. Chem. Eur. J. 2015; 21: 1
    • 6a Ramachary DB. Chowdari NS. Barbas III CF. Synlett 2003; 1910
    • 6b Ramachary DB. Anebouselvy K. Chowdari NS. Barbas III CF. J. Org. Chem. 2004; 69: 5838
    • 6c Ramachary DB. Barbas III CF. Chem. Eur. J. 2004; 10: 5323
    • 6d Pizzirani D. Roberti M. Recanatini M. Tetrahedron Lett. 2007; 48: 7120
    • 6e Ramachary DB. Venkaiah C. Krishna PM. Chem. Commun. 2012; 48: 2252
    • 6f Luo N.-H. Sun X. Wei W.-T. Zhang X.-J. Yan M. Tetrahedron: Asymmetry 2013; 24: 402
    • 6g Roy S. Amireddy M. Chen K. Tetrahedron 2013; 69: 8751
    • 6h Kuan H.-H. Chien C.-H. Chen K. Org. Lett. 2013; 15: 2880
    • 6i Anwar S. Li SM. Chen K. Org. Lett. 2014; 16: 2993
    • 6j Chen R. Xu S. Fan X. Li H. Tang Y. He Z. Org. Biomol. Chem. 2015; 13: 398
    • 6k Han B. Huang W. Ren W. He G. Wang J. Peng C. Adv. Synth. Catal. 2015; 357: 561
  • 7 Dai B. Song L. Wang P. Yi H. Cao W. Jin G. Zhu S. Shao M. Synlett 2009; 1842
  • 8 Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416

    • For selected examples of squaramide-catalyzed Michael additions of dicarbonyl compounds to nitroalkenes, see:
    • 9a Bae HY. Some S. Oh JS. Lee YS. Song CE. Chem. Commun. 2011; 47: 9621
    • 9b Bae HY. Some S. Lee JH. Kim J.-Y. Song MJ. Lee S. Zhang YJ. Song CE. Adv. Synth. Catal. 2011; 353: 3196
    • 9c Wang YF. Chen R.-X. Wang K. Zhang B.-B. Lib Z.-B. Xu D.-Q. Green Chem. 2012; 14: 893
    • 9d Chen D.-F. Wu P.-Y. Gong L.-J. Org. Lett. 2013; 15: 3958
    • 9e Kótai B. Kardos G. Hamza A. Farkas V. Pápai I. Soós T. Chem. Eur. J. 2014; 20: 5631
    • 10a Blümel M. Chauhan P. Hahn R. Raabe G. Enders D. Org. Lett. 2014; 16: 6012
    • 10b Hahn R. Raabe G. Enders D. Org. Lett. 2014; 16: 3636
    • 10c Chauhan P. Urbanietz G. Raabe G. Enders D. Chem. Commun. 2014; 50: 6853
    • 10d Urbanietz G. Atodiresei I. Enders D. Synthesis 2014; 46: 1261
    • 10e Chauhan P. Mahajan S. Loh CC. J. Raabe G. Enders D. Org. Lett. 2014; 16: 2954
    • 10f Loh CC. J. Chauhan P. Hack D. Lehmann C. Enders D. Adv. Synth. Catal. 2014; 356: 3181
    • 10g Mahajan S. Chauhan P. Loh CC. J. Uzungelis S. Raabe G. Enders D. Synthesis 2015; 47: 1024
    • 10h Chauhan P. Mahajan S. Raabe G. Enders D. Chem. Commun. 2015; 51: 2270
  • 11 The enantiomeric excess of the Michael adduct 3a could not be determined by chiral stationary phase HPLC or SFC, but was estimated by NMR measurement with a chiral shift reagent to be approximately 60%.
  • 12 A complete list of tested substrates can be found in the Supporting Information.
    • 13a CCDC 1406112 (major diastereomer of 5b) and CCDC 1406111 (minor diastereomer of 5b) contain the supplementary crystallographic data for this paper. The crystallographic data of both diastereomers of compound 5b are available free of charge at http://www.ccdc.cam.ac.
    • 13b The unit cell of the major diastereomer of 5b includes an additional molecule of the same absolute configuration. For clarity only one molecule is depicted. Furthermore, the crystal structure of both diastereomers included one benzene molecule as solvent, which is also not depicted. Further details can be found in the Supporting Information.
    • 13c The proposed mechanism and a model for the stereoselectivity can be found in the Supporting Information.