Aktuelle Ernährungsmedizin 2015; 40(01): 43-49
DOI: 10.1055/s-0034-1387528
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Interaktion von Ballaststoffen und Mikrobiota

Interaction of Dietary Fiber and Microbiota
M. Blaut
Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke
› Author Affiliations
Further Information

Publication History

Publication Date:
05 February 2015 (online)

Zusammenfassung

Der Darm ist mit einer komplexen mikrobiellen Lebensgemeinschaft (Mikrobiota) besiedelt, die große interindividuelle Unterschiede aufweist. Bei Ballaststoffen handelt es sich hauptsächlich um nicht verdauliche Polysaccharide, welche in Abhängigkeit von ihren physikochemischen Eigenschaften die Darmphysiologie entweder direkt oder über die intestinale Mikrobiota beeinflussen. Ballaststoffe sind die Hauptsubstrate für Darmbakterien. Sie werden hauptsächlich zu kurzkettigen Fettsäuren sowie Wasserstoff, Kohlendioxid und Methan abgebaut. Kurzkettige Fettsäuren liefern dem Wirt nicht nur Energie, sondern sie besitzen darüber hinaus regulatorische Funktionen. Sie beeinflussen den Lipidstoffwechsel in der Leber sowie die Ausschüttung von Hormonen, durch welche Darmpassagezeit, Insulinsensitivität und Sättigungsgefühl beeinflusst werden. Insgesamt ist die Rolle der kurzkettigen Fettsäuren bei der Entstehung von Adipositas und Diabetes jedoch bisher nur unzureichend verstanden.

Abstract

The intestinal tract is home to a complex microbial community (microbiota), which is characterized by large inter-individual differences. One of the main components of dietary fiber are indigestible polysaccharides, which in dependence of their physicochemical properties affect gut physiology either directly or by way of the intestinal microbiota. Indigestible carbohydrates are the main substrates of intestinal bacteria, which convert them mainly to short-chain fatty acids as well as hydrogen, carbon dioxide and methane. Short-chain fatty acids not only provide energy to the host but also possess regulatory functions. They influence the lipid metabolism in the liver and the excretion of hormones, which affect gastrointestinal passage, insulin sensitivity and satiety. Overall the role of short-chain fatty acids in the development of obesity and diabetes is not completely understood.

 
  • Literatur

  • 1 Deutsche Gesellschaft für Ernährung. Evidenzbasierte Leitlinie: Kohlenhydratzufuhr und Prävention ausgewählter ernährungsmitbedingter Krankheiten. Im Internet: 2011. www.dge.de/rd/leitlinie (Zugriff: 27.08.2014)
  • 2 Blaut M, Loh G. Aufbau und Funktion der intestinalen Mikrobiota des Menschen. In: Bischoff S, Hrsg. Probiotika, Präbiotika und Synbiotika. Stuttgart: Thieme; 2009: 2-23
  • 3 Slavin JL. Dietary fiber and body weight. Nutrition 2005; 21: 411-418
  • 4 Brown AJ, Goldsworthy SM, Barnes AA et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278: 11312-11319
  • 5 Xiong Y, Miyamoto N, Shibata K et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci U S A 2004; 101: 1045-1050
  • 6 Tazoe H, Otomo Y, Kaji I et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 2008; 59 (Suppl. 02) 251-262
  • 7 Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr 2009; 98: 229-238
  • 8 Turnbaugh PJ, Ley RE, Mahowald MA et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444: 1027-1031
  • 9 Cani PD, Bibiloni R, Knauf C et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470-1481
  • 10 Kalliomaki M, Isolauri E. Role of intestinal flora in the development of allergy. Curr Opin Allergy Clin Immunol 2003; 3: 15-20
  • 11 Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe 2014; 15: 317-328
  • 12 Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology 2010; 139: 1816-1819
  • 13 Hsiao EY, McBride SW, Hsien S et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 2013; 155: 1451-1463
  • 14 Mittal RD, Kumar R. Gut-inhabiting bacterium Oxalobacter formigenes: role in calcium oxalate urolithiasis. J Endourol 2004; 18: 418-424
  • 15 Turnbaugh PJ, Ley RE, Hamady M et al. The human microbiome project. Nature 2007; 449: 804-810
  • 16 Lozupone CA, Stombaugh JI, Gordon JI et al. Diversity, stability and resilience of the human gut microbiota. Nature 2012; 489: 220-230
  • 17 Turnbaugh PJ, Hamady M, Yatsunenko T et al. A core gut microbiome in obese and lean twins. Nature 2009; 457: 480-484
  • 18 Atkinson C, Berman S, Humbert O et al. In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J Nutr 2004; 134: 596-599
  • 19 Matthies A, Loh G, Blaut M et al. Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 2012; 142: 40-46
  • 20 Hehemann JH, Correc G, Barbeyron T et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010; 464: 908-912
  • 21 Cummings JH. Anatomy and physiology of the human colon. ILSI Workshop on Colonic Microflora: Nutrition and Health; 1994
  • 22 Heseker H. Ein Mix gesunder Fasern: Systematik und Eigenschaften der Ballaststoffe. Aktuel Ernahrungsmed 2014; 39 (Suppl. 01) S2-S4
  • 23 Englyst HN, Trowell H, Southgate DA et al. Dietary fiber and resistant starch. Am J Clin Nutr 1987; 46: 873-874
  • 24 Slavin JL, Brauer PM, Marlett JA. Neutral detergent fiber, hemicellulose and cellulose digestibility in human subjects. J Nutr 1981; 111: 287-297
  • 25 Cummings JH, Beatty ER, Kingman SM et al. Digestion and physiological properties of resistant starch in the human large bowel. Br J Nutr 1996; 75: 733-747
  • 26 Haub MD, Hubach KL, Al-Tamimi EK et al. Different types of resistant starch elicit different glucose reponses in humans. J Nutr Metab 2010; DOI: 10.1155/2010/230501.
  • 27 Belenguer A, Duncan SH, Calder AG et al. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 2006; 72: 3593-3599
  • 28 Murphy N, Norat T, Ferrari P et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 2012; 7: e39361
  • 29 Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des 2003; 9: 347-358
  • 30 Archer SY, Johnson J, Kim HJ et al. The histone deacetylase inhibitor butyrate downregulates cyclin B1 gene expression via a p21/WAF-1-dependent mechanism in human colon cancer cells. Am J Physiol Gastrointest Liver Physiol 2005; 289: G696-703
  • 31 Hague A, Manning AM, Hanlon KA et al. Sodium butyrate induces apoptosis in human colonic tumour cell lines in a p53-independent pathway: implications for the possible role of dietary fibre in the prevention of large-bowel cancer. Int J Cancer 1993; 55: 489-505
  • 32 Ley RE, Backhed F, Turnbaugh P et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005; 102: 11070-11075
  • 33 Ridaura VK, Faith JJ, Rey FE et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341: 1241214
  • 34 Sonnenburg JL, Xu J, Leip DD et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 2005; 307: 1955-1959
  • 35 Turnbaugh PJ, Backhed F, Fulton L et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 2008; 3: 213-223
  • 36 McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 1984; 39: 338-342
  • 37 Roberfroid M, Gibson GR, Delzenne N. The biochemistry of oligofructose, a nondigestible fiber: an approach to calculate its caloric value. Nutr Rev 1993; 51: 137-146
  • 38 Max Rubner-Institut. Ergebnisbericht, Teil 2, Nationale Verzehrsstudie II. Im Internet: 2008. http://www.mri.bund.de/fileadmin/Institute/EV/NVSII_Abschlussbericht_Teil_2.pdf (Zugriff: 10.12.2014)
  • 39 Isken F, Klaus S, Osterhoff M et al. Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J Nutr Biochem 2010; 21: 278-284
  • 40 Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology 2007; 132: 2116-2130
  • 41 Lin HC, Neevel C, Chen JH. Slowing intestinal transit by PYY depends on serotonergic and opioid pathways. Am J Physiol Gastrointest Liver Physiol 2004; 286: G558-563
  • 42 Samuel BS, Shaito A, Motoike T et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci U S A 2008; 105: 16767-16772
  • 43 Tolhurst G, Heffron H, Lam YS et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61: 364-371
  • 44 Freeland KR, Wilson C, Wolever TM. Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 2010; 103: 82-90