Dtsch Med Wochenschr 2014; 139(S 04): S111-S115
DOI: 10.1055/s-0034-1387454
Übersicht | Review article
Pneumologie
© Georg Thieme Verlag KG Stuttgart · New York

Epigenetik und Genetik der pulmonal arteriellen Hypertonie – neue Erkenntnisse der letzten Jahre

Epigenetics and genetics of pulmonary arterial hypertension – new insights from the last years
G. Kwapiszewska
1   Universitätsklinik für Anästhesiologie und Intensivmedizin, Medizinische Universität Graz, Österreich
2   Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
,
R. R. Viales
3   Institut für Humangenetik, Universitätsklinikum Heidelberg, Deutschland
4   Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Deutschland
,
N. Ehlken
4   Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Deutschland
,
C. A. Eichstaedt
4   Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Deutschland
,
G. Riemekasten
5   Rheumatologie, Institut für Medizin, Charité – Universitätsmedizin Berlin, Deutschland
,
G. Grünig
6   Dept. Environmental Medicine, Dept. Medicine (Pulmonary Medicine), New York University School of Medicine, New York, NY, USA
,
I. Mäder
7   Zentralklinik Bad Berka GmbH, Klinik für Pneumolgie, Schlaf- und Beatmungsmedizin, Deutschland
,
T. Schröder
8   Abteilung Pneumologie und Beatmungsmedizin, Klinikum Bad Salzungen, Deutschland
,
H. Klose
9   Abteilung Pneumologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
,
K. Hinderhofer
3   Institut für Humangenetik, Universitätsklinikum Heidelberg, Deutschland
,
C. Fischer
3   Institut für Humangenetik, Universitätsklinikum Heidelberg, Deutschland
,
S. Ulrich
10   Klinik für Pneumologie, Universitätsspital Zürich, Schweiz
,
E. Grünig
4   Zentrum für pulmonale Hypertonie, Thoraxklinik am Universitätsklinikum Heidelberg, Deutschland
,
A. Olschewski
1   Universitätsklinik für Anästhesiologie und Intensivmedizin, Medizinische Universität Graz, Österreich
2   Ludwig Boltzmann Institut für Lungengefäßforschung, Graz, Österreich
› Author Affiliations
Further Information

Publication History

29 October 2014

06 November 2014

Publication Date:
09 December 2014 (online)

 
  • Literatur

  • 1 Saco TV, Parthasarathy PT, Cho Y et al. Role of epigenetics in pulmonary hypertension. Am J Physiol Cell physiol 2014; 306: C1101-5
  • 2 Xu XF, Cheng F, Du LZ. Epigenetic regulation of pulmonary arterial hypertension. Hypertension Res 2011; 34: 981-6
  • 3 Archer SL, Marsboom G, Kim GH et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 2010; 121: 2661-71
  • 4 Bogaard HJ, Mizuno S, Hussaini AA et al. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am J Respir Crit Care Med 2011; 183: 1402-10
  • 5 Zhao L, Chen CN, Hajji N et al. Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation 2012; 126: 455-67
  • 6 Cavasin MA, Demos-Davies K, Horn TR et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circulation Res 2012; 110: 739-48
  • 7 Galletti M, Cantoni S, Zambelli F et al. Dissecting histone deacetylase role in pulmonary arterial smooth muscle cell proliferation and migration. Biochem Pharmacol 2014; 91: 181-90
  • 8 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-54
  • 9 Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Molec Med 2014; 20: 460-9
  • 10 Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nature Rev Drug Discovery 2014; 13: 622-38
  • 11 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15-20
  • 12 Pullamsetti SS, Doebele C, Fischer A et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 2012; 185: 409-19
  • 13 Brock M, Samillan VJ, Trenkmann M et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension. Eur Heart J 2012;
  • 14 Schlosser K, White RJ, Stewart DJ. miR-26a linked to pulmonary hypertension by global assessment of circulating extracellular microRNAs. Am J Respir Crit Care Med 2013; 188: 1472-5
  • 15 Kang K, Peng X, Zhang X et al. MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 2013; 288: 25414-27
  • 16 Pohl NM, Fernandez RA, Smith KA et al. Deacetylation of MicroRNA-124 in fibroblasts: role in pulmonary hypertension. Circulation Res 2014; 114: 5-8
  • 17 Wang D, Zhang H, Li M et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circulation Res 2014; 114: 67-78
  • 18 Bertero T, Lu Y, Annis S et al. Systems-level regulation of microRNA networks by miR-130/301 promotes pulmonary hypertension. J Clin Invest 2014; 124: 3514-28
  • 19 Caruso P, Dempsie Y, Stevens HC et al. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circulation Res 2012; 111: 290-300
  • 20 Rhodes CJ, Wharton J, Boon RA et al. Reduced microRNA-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 2013; 187: 294-302
  • 21 Courboulin A, Paulin R, Giguere NJ et al. Role for miR-204 in human pulmonary arterial hypertension. J Exp Med 2011; 208: 535-48
  • 22 Brock M, Trenkmann M, Gay RE et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway. Circulation Res 2009; 104: 1184-91
  • 23 Drake KM, Dunmore BJ, McNelly LN et al. Correction of nonsense BMPR2 and SMAD9 mutations by ataluren in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2013; 49: 403-9
  • 24 Boettger T, Beetz N, Kostin S et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clinical Invest 2009; 119: 2634-47
  • 25 Dunmore BJ, Drake KM, Upton PD et al. The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Hum Molec Genet 2013; 22: 3667-79
  • 26 Deng Z, Morse JH, Slager SL et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000; 67: 737-44
  • 27 International PPHC, Lane KB, Machado RD et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nature genetics 2000; 26: 81-4
  • 28 Soubrier F, Chung WK, Machado R et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol 2013; 62: D13-21
  • 29 Machado RD, Koehler R, Glissmeyer E et al. Genetic association of the serotonin transporter in pulmonary arterial hypertension. Am J Respir Crit Care Med 2006; 173: 793-7
  • 30 Chaouat A, Coulet F, Favre C et al. Endoglin germline mutation in a patient with hereditary haemorrhagic telangiectasia and dexfenfluramine associated pulmonary arterial hypertension. Thorax 2004; 59: 446-8
  • 31 Trembath RC, Thomson JR, Machado RD et al. Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagic telangiectasia. NEJM 2001; 345: 325-34
  • 32 Pfarr N, Fischer C, Ehlken N et al. Hemodynamic and genetic analysis in children with idiopathic, heritable, and congenital heart disease associated pulmonary arterial hypertension. Respir Res 2013; 14: 3
  • 33 Pfarr N, Szamalek-Hoegel J, Fischer C et al. Hemodynamic and clinical onset in patients with hereditary pulmonary arterial hypertension and BMPR2 mutations. Respir Res 2011; 12: 99
  • 34 Hinderhofer K, Fischer C, Pfarr N et al. Identification of a new intronic BMPR2-mutation and early diagnosis of heritable pulmonary arterial hypertension in a large family with mean clinical follow-up of 12 years. PLoS One 2014; 9: e91374
  • 35 Nasim MT, Ogo T, Ahmed M et al. Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Human Mutation 2011; 32: 1385-9
  • 36 Austin ED, Ma L, LeDuc C et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. Circ Cardiovasc Genet 2012; 5: 336-43
  • 37 Eyries M, Montani D, Girerd B et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nature Genetics 2014; 46: 65-9
  • 38 Olschewski A, Papp R, Nagaraj C et al. Ion channels and transporters as therapeutic targets in the pulmonary circulation. Pharmacol Therapeutics 2014;
  • 39 Olschewski A, Li Y, Tang B et al. Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circulation Res 2006; 98: 1072-80
  • 40 Li Y, Connolly M, Nagaraj C et al. Peroxisome proliferator-activated receptor-beta/delta, the acute signaling factor in prostacyclin-induced pulmonary vasodilation. Am J Resp Cell Molec Biol 2012; 46: 372-9
  • 41 Nagaraj C, Tang B, Balint Z et al. Src tyrosine kinase is crucial for potassium channel function in human pulmonary arteries. Eur Respir J 2013; 41: 85-95
  • 42 Tang B, Li Y, Nagaraj C et al. Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Resp Cell Molec Biol 2009; 41: 476-83
  • 43 Ma L, Roman-Campos D, Austin ED et al. A novel channelopathy in pulmonary arterial hypertension. NEJM 2013; 369: 351-61
  • 44 Alastalo TP, Li M, de Perez VJ et al. Disruption of PPARgamma/beta-catenin-mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Invest 2011; 121: 3735-46
  • 45 Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 2012; 122: 4306-13
  • 46 Upton PD, Davies RJ, Tajsic T et al. Transforming growth factor-beta(1) represses bone morphogenetic protein-mediated Smad signaling in pulmonary artery smooth muscle cells via Smad3. Am J Resp Cell Molec Biol 2013; 49: 1135-45
  • 47 Yamamura H, Yamamura A, Ko EA et al. Activation of Notch signaling by short-term treatment with Jagged-1 enhances store-operated Ca(2+) entry in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2014; 306: C871-8
  • 48 Müller T, Grünig E, Kebbewar M et al. Familiäre pulmonal arterielle Hypertonie. medgen 2006; 18: 318-23