Synlett 2015; 26(14): 2006-2008
DOI: 10.1055/s-0034-1381117
letter
© Georg Thieme Verlag Stuttgart · New York

Ultrasound-Assisted Methyl Esterification of Carboxylic Acids ­Catalyzed by Polymer-Supported Triphenylphosphine

Subin Jaita
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
,
Wong Phakhodee
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
,
Mookda Pattarawarapan*
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand   Email: mookdap55@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 16 April 2015

Accepted after revision: 09 June 2015

Publication Date:
09 July 2015 (online)


Abstract

A convenient and efficient sonochemical method for methyl esterification of carboxylic acids catalyzed by polymer-supported tri­phenylphosphine (PS-Ph3P) is reported. In the presence of 1:0.1:2 molar ratio of 2,4,6-trichloro-1,3,5-triazine/PS-Ph3P/Na2CO3, methyl esters of various carboxylic acids bearing reactive hydroxyl groups as well as ­acid- or base-labile functionalities could be rapidly prepared (within 10–20 min) in good to excellent yields without necessity to pre-activate the acids. Using the polymer-bound phosphine also allows easy isolation of the products which, in most of the cases, were obtained in high purities without column chromatography.

 
  • References and Notes

    • 1a Leung G, Strezov V In Biomass Processing Technologies. Strezov V, Evans TJ. CRC Press; Boca Raton: 2014: 213
    • 1b Salvi BL, Panwar NL. Renewable Sustainable Energy Rev. 2012; 16: 3680
    • 1c McGinty D, Letizia CS, Api AM. Food Chem. Toxicol. 2012; 50: S479
    • 1d Foster NC. SODEOPEC: Soaps, Detergents, Oleochemicals and Personal Care Products. Spitz L. AOCS Publishing; Urbana (IL, USA): 2004: 261
    • 1e Cox MF, Weerasooriya U. Surfactant Sci. Ser. 2003; 114: 467
    • 1f Nakamura M. J. Oleo Sci. 2001; 50: 445
    • 1g Opdyke DL. J. Food Cosmet. Toxicol. 1974; 12: 939
  • 2 Otera J. Esterification: Methods, Reactions, and Applications. Wiley-VCH; Weinheim: 2003: 1-326
    • 3a Mal D, Jana A, Ray S, Bhattacharya S, Patra A, De S R. Synth. Commun. 2008; 38: 3937
    • 3b Avila-Zarraga JG, Martinez R. Synth. Commun. 2001; 31: 2177
    • 3c Mal D. Synth. Commun. 1986; 16: 331
    • 4a Mastronardi F, Gutmann B, Kappe CO. Org. Lett. 2013; 15: 5590
    • 4b Olias JM, Rios JJ, Valle M. J. Chromatogr. A 1989; 467: 279
    • 4c Eisenbraun EJ, Morris RN, Adolphen G. J. Chem. Educ. 1970; 47: 710
  • 5 Presser A, Huefner A. Monatsh. Chem. 2004; 135: 1015
  • 6 Heravi MM, Ahari NZ, Oskooie HA, Ghassemzadeh M. Phosphorus, Sulfur Silicon Relat. Elem. 2005; 180: 1701
  • 7 Yoshino T, Togo H. Synlett 2005; 517
  • 8 Rajabi F, Saidi MR. Synth. Commun. 2004; 34: 4179
  • 9 Fischer E, Speier A. Ber. Dtsch. Chem. Ges. 1895; 28: 3252
    • 10a Venkataraman K, Wagle DR. Tetrahedron Lett. 1979; 3037
    • 10b Kunishima M, Morita J, Kawachi C, Iwasaki F, Terao K, Tani S. Synlett 1999; 1255
    • 10c Kunishima M, Kawachi C, Morita J, Terao K, Iwasaki F, Tani S. Tetrahedron 1999; 55: 13159
    • 10d Kaminski ZJ. Biopolymers 2000; 55: 140
    • 10e Wet-osot S, Duangkamol C, Pattarawarapan M, Phakhodee W. Monatsh. Chem. 2015; 146: 959
  • 11 Rodrigues Rd C, Barros IM. A, Lima EL. S. Tetrahedron Lett. 2005; 46: 5945
  • 12 Heller ST, Sarpong R. Org. Lett. 2010; 12: 4572
  • 13 Morcillo SP, Alvarez de Cienfuegos L, Mota AJ, Justicia J, Robles R. J. Org. Chem. 2011; 76: 2277
  • 14 Chen H, Xu X, Liu L, Tang G, Zhao Y. RSC Adv. 2013; 3: 16247
  • 15 Mamidi N, Manna D. J. Org. Chem. 2013; 78: 2386
    • 16a Lanning ME, Fletcher S. Tetrahedron Lett. 2013; 54: 4624
    • 16b Iranpoor N, Firouzabadi H, Khalili D, Motevalli S. J. Org. Chem. 2008; 73: 4882
    • 16c Fitzjarrald VP, Pongdee R. Tetrahedron Lett. 2007; 48: 3553
    • 16d Dandapani S, Curran DP. Tetrahedron 2002; 58: 3855
    • 16e Hughes DL, Reamer RA. J. Org. Chem. 1996; 61: 2967
    • 16f Camp D, Jenkins ID. J. Org. Chem. 1989; 54: 3049
    • 16g Hughes DL, Reamer RA, Bergan JJ, Grabowski EJ. J. J. Am. Chem. Soc. 1988; 110: 6487
    • 17a Varma RS. Green Chem. Lett. Rev. 2007; 1: 37
    • 17b Serpone N, Colarusso P. Res. Chem. Intermed. 1994; 20: 635
    • 17c Cintas P, Luche JL. Green Chem. 1999; 1: 115
    • 17d Puri S, Kaur B, Parmar A, Kumar H. Curr. Org. Chem. 2013; 17: 1790
    • 17e Suprarukmi DD, Sudrajat BA ;Widayat Procedia Environ. Sci. 2015; 23: 78
  • 18 Jaita S, Kaewkum P, Duangkamol C, Phakhodee W, Pattarawarapan M. RSC Adv. 2014; 4: 46947
  • 19 General Procedure The carboxylic acid (0.271 mmol), TCT (0.050 g, 0.271 mmol), PS-Ph3P (0.009 g, 0.027 mmol, loading 3.0 mmol/g), and Na2CO3 (0.057 g, 0.542 mmol) were added to MeOH (0.5 mL). Then the mixture was sonicated in an ultrasonic bath (Elmasonic S 30H) at 50 °C for the specified time. After completion, the crude mixture was filtered through a short pad of silica to obtain the product after solvent evaporation. Whenever necessary, the product was further purified by flash chromatography.
  • 20 Methyl Cinnamate (Table 1 Entry 13) Colorless oil (0.036 g, 82% yield); Rf = 0.48 (5% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 7.69 (d, J = 16.0 Hz, 1 H), 7.53–7.50 (m, 2 H), 7.38–7.36 (m, 3 H), 6.44 (dd, J = 16.0, 0.8 Hz, 1 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.4, 144.9, 134.4, 130.3, 128.9, 128.1, 117.8, 51.7. LRMS (EI): m/z (rel. intensity) = 162 (25) [M+], 131 (100), 103 (61), 77 (33).
  • 21 (9H-Fluoren-9-yl)methyl (Methoxycarbonyl)glycinate (Table 1 Entry 19) Colorless oil (0.0717 g, 85% yield); Rf = 0.46 (40% EtOAc–hexane). 1H NMR (400 MHz, CDCl3): δ = 7.76 (d, J = 7.6 Hz, 2 H), 7.60 (d, J = 7.6 Hz, 2 H), 7.39 (t, J = 7.6 Hz, 2 H), 7.31 (t, J = 7.6 Hz, 2 H), 5.43 (br s, 1 H), 4.41 (d, J = 6.8 Hz, 2 H), 4.23 (t, J = 6.8 Hz, 1 H), 3.99 (d, J = 5.2 Hz, 2 H), 3.75 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.5, 156.4, 143.8, 141.3, 127.7, 127.1, 125.1, 120.0, 67.2, 52.4, 47.1, 42.7. LRMS (EI): m/z (rel. intensity) = 311 (3) [M+], 178 (100), 165 (28).
  • 22 McNulty J, Nair JJ, Cheekoori S, Larichev V, Capretta A, Robertson AJ. Chem. Eur. J. 2006; 12: 9314