Subscribe to RSS
DOI: 10.1055/s-0034-1381023
Nucleophilic Reactivity of a Metal-Bound Superoxide Ligand
Publication History
Received: 29 April 2015
Accepted after revision: 03 June 2015
Publication Date:
16 July 2015 (online)
Abstract
Metal–superoxide species have frequently been implicated as transient intermediates in dioxygen activating metalloenzymes. The metal-bound superoxide moiety has been proposed to react both as an electrophile and a nucleophile. In general, model complexes that mimic metalloenzyme function have been shown to react as electrophiles, and none have displayed nucleophilic reactivity. Herein, we highlight a recent contribution from our group in which we demonstrated the first well-defined example of a metal–superoxide acting as a nucleophile. We have shown the propensity for a copper-superoxide species to perform nucleophilic deformylation of various aldehydes. In doing so, we have provided experimental support for the postulated role of an iron(III)–superoxide reacting as a nucleophile in the α-ketoglutarate-dependent dioxygenases amongst others.
-
References
- 1a Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 2014; 114: 3659
- 1b Que L, Tolman WB. Nature (London, U.K.) 2008; 455: 333
- 1c Krebs C, Galonić Fujimori D, Walsh CT, Bollinger JM. Acc. Chem. Res. 2007; 40: 484
- 1d Que L, Ho RY. N. Chem. Rev. 1996; 96: 2607
- 1e Costas M, Chen K, Que LJr. Coord. Chem. Rev. 2000; 200-202: 517
- 2a Himes RA, Karlin KD. Curr. Opin. Chem. Biol. 2009; 13: 119
- 2b Merkx M. Angew. Chem. Int. Ed. 2001; 40: 2782
- 3a McDonald AR, Que LJr. Coord. Chem. Rev. 2013; 257: 414
- 3b Gunay A, Theopold KH. Chem. Rev. 2010; 110: 1060
- 3c Shan X, Que LJr. J. Inorg. Biochem. 2006; 100: 421
- 4a Burzlaff NI, Rutledge PJ, Clifton IJ, Hensgens CM. H, Pickford M, Adlington RM, Roach PL, Baldwin JE. Nature (London, U.K.) 1999; 401: 721
- 4b Roach PL, Clifton IJ, Hensgens CM. H, Shibata N, Schofield CJ, Hajdu J, Baldwin JE. Nature (London, U.K.) 1997; 387: 827
- 4c Valegard K, van Scheltinga AC. T, Lloyd MD, Hara T, Ramaswamy S, Perrakis A, Thompson A, Lee H.-J, Baldwin JE, Schofield CJ, Hajdu J, Andersson I. Nature (London, U.K.) 1998; 394: 805
- 5a Peck SC, Cooke HA, Cicchillo RM, Malova P, Hammerschmidt F, Nair SK, van der Donk WA. Biochemistry 2011; 50: 6598
- 5b Whitteck JT, Malova P, Peck SC, Cicchillo RM, Hammerschmidt F, van der Donk WA. J. Am. Chem. Soc. 2011; 133: 4236
- 6 Mirica LM, Klinman JP. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 1814
- 7a van der Donk WA, Krebs C, Bollinger JM. Jr. Curr. Opin. Struct. Biol. 2010; 20: 673
- 7b Bollinger JM. Jr, Krebs C. Curr. Opin. Chem. Biol. 2007; 11: 151
- 8 Lipscomb JD. Curr. Opin. Struct. Biol. 2008; 18: 644
- 9 Klinman JP. J. Biol. Chem. 2006; 281: 3013
- 10 Hess CR, McGuirl MM, Klinman JP. J. Biol. Chem. 2008; 283: 3042
- 11 Bollinger JM, Price JC, Hoffart LM, Barr EW, Krebs C. Eur. J. Inorg. Chem. 2005; 4245
- 12a Pavon JA, Fitzpatrick PF. Biochemistry 2006; 45: 11030
- 12b Panay AJ, Lee M, Krebs C, Bollinger JM, Fitzpatrick PF. Biochemistry 2011; 50: 1928
- 13 Chiang C.-W, Kleespies ST, Stout HD, Meier KK, Li P.-Y, Bominaar EL, Que L, Münck E, Lee W.-Z. J. Am. Chem. Soc. 2014; 136: 10846
- 14 Shan X, Que L. Proc. Natl. Acad. Sci. U.S.A. 2005; 102: 5340
- 15 Hong S, Sutherlin KD, Park J, Kwon E, Siegler MA, Solomon EI, Nam W. Nat. Commun. 2014; 5: 5440
- 16 Mahroof-Tahir M, Karlin KD. J. Am. Chem. Soc. 1992; 114: 7599
- 17a Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N. J. Am. Chem. Soc. 1994; 116: 12079
- 17b Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI. J. Am. Chem. Soc. 2003; 125: 466
- 18 Hatcher L, Karlin K. J. Biol. Inorg. Chem. 2004; 9: 669
- 19 Lewis EA, Tolman WB. Chem. Rev. 2004; 104: 1047
- 20 Chaudhuri P, Hess M, Weyhermüller T, Wieghardt K. Angew. Chem. Int. Ed. 1999; 38: 1095
- 21 Weitzer M, Schindler S, Brehm G, Schneider S, Hörmann E, Jung B, Kaderli S, Zuberbühler AD. Inorg. Chem. 2003; 42: 1800
- 22a Schatz M, Raab V, Foxon SP, Brehm G, Schneider S, Reiher M, Holthausen MC, Sundermeyer J, Schindler S. Angew. Chem. Int. Ed. 2004; 43: 4360
- 22b Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S. Angew. Chem. Int. Ed. 2006; 45: 3867
- 23 Maiti D, Lee D.-H, Gaoutchenova K, Würtele C, Holthausen MC, Narducci Sarjeant AA, Sundermeyer J, Schindler S, Karlin KD. Angew. Chem. Int. Ed. 2008; 47: 82
- 24a Lee JY, Peterson RL, Ohkubo K, Garcia-Bosch I, Himes RA, Woertink J, Moore CD, Solomon EI, Fukuzumi S, Karlin KD. J. Am. Chem. Soc. 2014; 136: 9925
- 24b Peterson RL, Himes RA, Kotani H, Suenobu T, Tian L, Siegler MA, Solomon EI, Fukuzumi S, Karlin KD. J. Am. Chem. Soc. 2011; 133: 1702
- 25a Kobayashi Y, Ohkubo K, Nomura T, Kubo M, Fujieda N, Sugimoto H, Fukuzumi S, Goto K, Ogura T, Itoh S. Eur. J. Inorg. Chem. 2012; 4574
- 25b Kunishita A, Kubo M, Sugimoto H, Ogura T, Sato K, Takui T, Itoh S. J. Am. Chem. Soc. 2009; 131: 2788
- 25c Abe T, Morimoto Y, Tano T, Mieda K, Sugimoto H, Fujieda N, Ogura T, Itoh S. Inorg. Chem. 2014; 53: 8786
- 25d Tano T, Okubo Y, Kunishita A, Kubo M, Sugimoto H, Fujieda N, Ogura T, Itoh S. Inorg. Chem. 2013; 52: 10431
- 26a Kunishita A, Ertem MZ, Okubo Y, Tano T, Sugimoto H, Ohkubo K, Fujieda N, Fukuzumi S, Cramer CJ, Itoh S. Inorg. Chem. 2012; 51: 9465
- 26b Kobayashi Y, Ohkubo K, Nomura T, Kubo M, Fujieda N, Sugimoto H, Fukuzumi S, Goto K, Ogura T, Itoh S. Eur. J. Inorg. Chem. 2012; 4574
- 27a Yao S, Driess M. Acc. Chem. Res. 2011; 45: 276
- 27b Company A, Yao S, Ray K, Driess M. Chem. Eur. J. 2010; 16: 9669
- 27c Yao S, Bill E, Milsmann C, Wieghardt K, Driess M. Angew. Chem. Int. Ed. 2008; 47: 7110
- 27d Fujita K, Schenker R, Gu W, Brunold TC, Cramer SP, Riordan CG. Inorg. Chem. 2004; 43: 3324
- 27e Kieber-Emmons MT, Riordan CG. Acc. Chem. Res. 2007; 40: 618
- 27f Kieber-Emmons MT, Annaraj J, Seo MS, Van Heuvelen KM, Tosha T, Kitagawa T, Brunold TC, Nam W, Riordan CG. J. Am. Chem. Soc. 2006; 128: 14230
- 28 Sawyer DT, Valentine JS. Acc. Chem. Res. 1981; 14: 393
- 29 Coggins MK, Sun X, Kwak Y, Solomon EI, Rybak-Akimova E, Kovacs JA. J. Am. Chem. Soc. 2013; 135: 5631
- 30a Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L. Inorg. Chem. 2010; 49: 3618
- 30b Mehn MP, Fujisawa K, Hegg EL, Que L. J. Am. Chem. Soc. 2003; 125: 7828
- 30c Mukherjee A, Martinho M, Bominaar EL, Münck E, Que L. Angew. Chem. Int. Ed. 2009; 48: 1780
- 31 Nishinaga A, Tomita H, Tarumi Y, Matsuura T. Tetrahedron Lett. 1980; 21: 4849
- 32 Donoghue PJ, Gupta AK, Boyce DW, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2010; 132: 15869
- 33 Pirovano P, Magherusan AM, McGlynn C, Ure A, Lynes A, McDonald AR. Angew. Chem. Int. Ed. 2014; 53: 5946
- 34a Cho J, Kang HY, Liu LV, Sarangi R, Solomon EI, Nam W. Chem. Sci. 2013; 4: 1502
- 34b Cho J, Sarangi R, Nam W. Acc. Chem. Res. 2012; 45: 1321
- 34c Cho J, Sarangi R, Kang HY, Lee JY, Kubo M, Ogura T, Solomon EI, Nam W. J. Am. Chem. Soc. 2010; 132: 16977
- 34d Cho J, Sarangi R, Annaraj J, Kim SY, Kubo M, Ogura T, Solomon EI, Nam W. Nat. Chem. 2009; 1: 568
- 34e Annaraj J, Cho J, Lee Y.-M, Kim SY, Latifi R, de Visser SP, Nam W. Angew. Chem. Int. Ed. 2009; 48: 4150
- 34f Jo Y, Annaraj J, Seo MS, Lee YM, Kim SY, Cho J, Nam W. J. Inorg. Biochem. 2008; 102: 2155
- 34g Seo MS, Kim JY, Annaraj J, Kim Y, Lee Y.-M, Kim S.-J, Kim J, Nam W. Angew. Chem. Int. Ed. 2007; 46: 377
- 34h Annaraj J, Suh Y, Seo MS, Kim SO, Nam W. Chem. Commun. 2005; 4529
- 34i Cho J, Jeon S, Wilson SA, Liu LV, Kang EA, Braymer JJ, Lim MH, Hedman B, Hodgson KO, Valentine JS, Solomon EI, Nam W. Nature (London, U.K.) 2011; 478: 502
- 35 McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Angew. Chem. Int. Ed. 2012; 51: 9132
- 36 Strukul G. Angew. Chem. Int. Ed. 1998; 37: 1198
- 37a Kundu S, Matito E, Walleck S, Pfaff FF, Heims F, Rábay B, Luis JM, Company A, Braun B, Glaser T, Ray K. Chem. Eur. J. 2012; 18: 2787
- 37b Ray K, Pfaff FF, Wang B, Nam W. J. Am. Chem. Soc. 2014; 136: 13942
- 38 Geiger RA, Chattopadhyay S, Day VW, Jackson TA. Dalton Trans. 2011; 40: 1707