Synlett 2015; 26(13): 1827-1830
DOI: 10.1055/s-0034-1381008
letter
© Georg Thieme Verlag Stuttgart · New York

Convenient Synthesis of N-Tosyl-2-(difluoromethyl)aziridine and Its Application to the Preparation of Difluoromethyl-β-tryptamine Analogues

Fumihiro Kurosato
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Takuya Ishikawa
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Yasunori Yamada
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
,
Takeshi Hanamoto*
Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Honjyo-machi 1, Saga 840-8502, Japan   Email: hanamoto@cc.saga-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 23 April 2015

Accepted after revision: 26 May 2015

Publication Date:
14 July 2015 (online)


Abstract

N-Tosyl-2-(difluoromethyl)aziridine was easily prepared from p-toluenesulfonamide (TsNH2) and β-(difluoromethyl) vinyl sulfonium salt in excellent yield. The reaction of the aziridine and a wide range of indoles in the presence of Et2Zn proceeded smoothly to give the corresponding difluoromethyl-β-tryptamine analogues in good to excellent yields and with excellent regioselectivity.

Supporting Information

 
  • References and Notes

    • 1a Ha H.-J, Jung J.-H, Lee WK. Asian J. Org. Chem. 2014; 3: 1020
    • 1b Jung N, Bräse S. Angew. Chem. Int. Ed. 2012; 51: 5538
    • 1c Florio S, Luisi R. Chem Rev. 2010; 110: 5128
    • 1d Singh GS, D’hooghe M, De Kimpe N. Chem. Rev. 2007; 107: 2080
    • 1e Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 2a Ojima I. J. Org. Chem. 2013; 78: 6358
    • 2b Kirk KL. Org. Process Res. Dev. 2008; 12: 305
    • 2c Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2d Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2e Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303

      For the works of our group, see:
    • 3a Yoshiki M, Ishibashi R, Yamada Y, Hanamoto T. Org. Lett. 2014; 16: 5509
    • 3b Hirotaki K, Yamada Y, Hanamoto T. Asian J. Org. Chem. 2014; 3: 285
    • 3c Takehiro Y, Hirotaki K, Takeshita C, Furuno H, Hanamoto T. Tetrahedron 2013; 69: 7448
    • 3d Maeda R, Ishibashi R, Kamaishi R, Hirotaki K, Furuno H, Hanamoto T. Org. Lett. 2011; 13: 6240

      For the works of other groups, see:
    • 4a Dolfen J, Kenis S, Van Hecke K, De Kimpe N, D’hooghe M. Chem. Eur. J. 2014; 20: 10650
    • 4b Waki M, Katagiri T, Matsuno K, Miyachi H. Tetrahedron Lett. 2014; 55: 6915
    • 4c Moens M, De Kimpe N, D’hooghe M. J. Org. Chem. 2014; 79: 5558
    • 4d Edman K, Ahlgren R, Bengtsson M, Bladh H, Bäckström S, Dahmén J, Henriksson K, Hillertz P, Hulikal V, Jerre A, Kinchin L, Káse C, Lepistö M, Mile I, Nilsson S, Smailagic A, Taylor J, Tjörnebo A, Wissler L, Hansson T. Bioorg. Med. Chem. Lett. 2014; 24: 2571
    • 4e Kuzmich D, Bentzien J, Betageri R, DiSalvo D, Fadra-Khan T, Harcken C, Kukulka A, Nabozny G, Nelson R, Pack E, Souza D, Thomson D. Bioorg. Med. Chem. Lett. 2013; 23: 6640
    • 4f Kenis S, D’hooghe M, Verniest G, Reybroeck M, Anh Dang Thi T, Pham The C, Thi Pham T, Törnroos KW, Van Tuyen N, De Kimpe N. Chem. Eur. J. 2013; 19: 5966
    • 4g Rassukana YV, Bezgubenko LV, Onys’ko PP, Synytsya AD. J. Fluorine Chem. 2013; 148: 14
    • 4h Yang Y, Huang Y, Qing F.-L. Tetrahedron Lett. 2013; 54: 3826
    • 4i Kenis S, D’hooghe M, Verniest G, Duc Nguyen V, Anh Dang Thi T, Van Nguyen T, De Kimpe N. Org. Biomol. Chem. 2011; 9: 7217
    • 4j Rinaudo G, Narizuka S, Askari N, Crousse B, Bonnet-Delpon D. Tetrahedron Lett. 2006; 47: 2065
    • 4k Yamauchi Y, Kawate T, Katagiri T, Uneyama K. Tetrahedron 2003; 59: 9839
    • 4l Yamauchi Y, Kawate T, Itahashi H, Katagiri T, Uneyama K. Tetrahedron Lett. 2003; 44: 6319
    • 4m Akiyama T, Ogi S, Fuchibe K. Tetrahedron Lett. 2003; 44: 4011
    • 4n Volonterio A, Bravo P, Panzeri W, Pesenti C, Zenda M. Eur. J. Org. Chem. 2002; 3336
    • 4o Crousse B, Narizuka S, Bonnet-Delpon D, Bégué J.-P. Synlett 2001; 679
    • 4p Katagiri T, Takahashi M, Fujiwara Y, Ihara H, Kenji U. J. Org. Chem. 1999; 64: 7323
    • 4q Katagiri T, Ihara H, Takahashi M, Kashino S, Furuhashi K, Uneyama K. Tetrahedron: Asymmetry 1997; 8: 2933
    • 4r Tanaka K, Kagatani S, Ohsuga M, Mitsuhashi K. Bull. Chem. Soc. Jpn. 1994; 67: 589
    • 4s Quinze K, Laureny A, Mison P. J. Fluorine Chem. 1989; 44: 233
    • 4t Tanaka K, Ohsuga M, Sugimoto Y, Okafuji Y, Mitsuhashi K. J. Fluorine Chem. 1988; 39: 39
    • 5a Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 5b Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
  • 6 Ishikawa T, Kasai N, Yamada Y, Hanamoto T. Tetrahedron 2015; 71: 1254

    • To the best of our knowledge, there are only two reports concerning CF2H-aziridines. See:
    • 8a Schweitzer-Chaput B, Keita M, Milcent T, Ongeri S, Crousse B. Tetrahedron 2012; 68: 7028
    • 8b Mae M, Matsuura M, Amii H, Uneyama K. Tetrahedron Lett. 2002; 43: 2069
  • 9 Experimental Procedure for 1a: A-100 mL round-bottom flask equipped with a magnetic stir bar was charged with K2CO3 (2.11 g, 15.0 mmol) and p-toluenesulfonamide (865.0 mg, 5.0 mmol) in EtOAc (10 mL). To this suspension was added β-(difluoromethyl)vinyl diphenyl sulfonium triflate (2.21 g, 5.25 mmol; see ref. 6) and the resulting suspension was stirred at r.t. for 1 h. The reaction was carefully quenched with aq NH4Cl solution (10 mL) and extracted with hexane–EtOAc (3:1). The extraction was repeated twice. The combined organic layers were dried over Na2SO4 and concentrated under reduced pressure. The oily residue was purified by silica gel column chromatography (hexane–Et2O, 1:1) to give the desired product 1a as white solid (1.23 g, 98%); mp 48.6–48.9 °C. IR (ATR): 3057, 1599, 1319, 1161, 1098, 1051, 992, 974, 878, 801, 727, 662 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.48 (d, J = 8.2 Hz, 2 H), 7.37 (d, J = 8.2 Hz, 2 H), 5.57 (td, J = 55.1, 4.1 Hz, 1 H), 3.05–3.20 (m, 1 H), 2.77 (d, ­J = 7.0 Hz, 1 H), 2.47 (s, 3 H), 2.42 (d, J = 4.1 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 145.3, 134.0, 129.9, 128.1, 113.1 (t, J = 241.3 Hz), 37.9 (t, J = 32.7 Hz), 28.7 (t, J = 3.9 Hz), 21.7. 19F NMR (376 MHz, CDCl3): δ = –120.9 (ddd, J = 296.8, 55.1, 7.1 Hz), –124.4 (ddd, J = 296.8, 55.1, 7.1 Hz). GC–MS (EI, 70 eV): m/z = 247 (11) [M+], 155 (50), 92 (58), 91 (100), 89 (8), 65 (26), 63 (7), 51 (5). Anal. Calcd for C10H11F2NO2S: C, 48.57; H, 4.48; N, 5.66. Found: C, 48.58; H, 4.40; N, 5.65.
  • 10 Schirlin D, Gerhart F, Hornsperger JM, Hamon M, Jung MJ. J. Med. Chem. 1988; 31: 30
  • 11 Experimental Procedure for 3a: A 25-mL two-neck flask equipped with a magnetic stir bar, a stopcock and, a three-way stopcock was charged with o-xylene (1 mL) under argon. To this solution were successively added indole 2a (37.0 mg, 0.32 mmol), 2-CF2H-N-Ts-aziridine 1a (60.1 mg, 0.24 mmol), and Et2Zn (1.06 M in hexane solution, 0.30 mL). After the mixture was stirred for 5 min at r.t., the flask was immersed in a preheated (150 °C) oil bath and stirred at this temperature for 1 h until the complete consumption of 1a (checked by TLC and GC–MS). After the reaction mixture was cooled to r.t., to the mixture was added a sat. aq solution of NH4Cl (1 mL), and the resulting mixture was extracted with EtOAc (2 mL) three times. The combined organic fractions were dried over Na2SO4. The residue was purified by chromatography on a silica gel column (hexane–EtOAc = 10:1, 3:1, then 1:1 as an eluent) to give 3a (96%, 84.4 mg) as a pale pink solid; mp 152.0–153.0 °C. IR (ATR): 1597, 1319, 1159, 1087, 1066, 1038, 747, 667, 572, 549, 524, 507 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.98 (s, 1 H), 7.36 (d, J = 7.1 Hz, 2 H), 7.26–7.31 (m, 2 H), 7.17 (t, J = 7.5 Hz, 1 H), 7.02 (t, J = 7.2 Hz, 1 H), 6.92 (d, J = 8.6 Hz, 3 H), 5.94 (t, J = 55.7 Hz, 1 H), 4.79 (d, J = 6.6 Hz, 1 H), 3.69–3.73 (m, 1 H), 3.14 (dd, J = 14.8, 4.9 Hz, 1 H), 2.90 (dd, J = 14.8, 8.8 Hz, 1 H), 2.28 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 143.3, 136.3, 135.8, 129.2, 126.7, 126.6, 123.3, 122.3, 119.8, 118.2, 115.0 (t, J = 246.1 Hz), 111.2, 108.9, 54.9 (t, J = 25.7 Hz), 23.3, 21.5. 19F NMR (376 MHz, CDCl3): δ = ­–128.4 (ddd, J = 282.0, 55.7, 9.5 Hz), –134.1 (ddd, J = 282.0, 55.7, 16.3 Hz). GC–MS (EI, 70 eV): m/z = 364 (7) [M+], 193 (2), 155 (2), 130 (100), 103 (4), 91 (7), 77 (5), 65 (2). HRMS (ESL–TOF): m/z [M + Na]+ calcd for C18H18F2N2O2SNa: 387.0955; found: 387.0950.
  • 12 CCDC 1059066 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033.