Synlett 2015; 26(12): 1744-1748
DOI: 10.1055/s-0034-1380751
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 2-Quinolinones through Palladium(II) Acetate Catalyzed Cyclization of N-(2-Formylaryl)alkynamides

Jianbo Zhang
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: xlhan@mail.sioc.ac.cn   Email: xylu@mail.sioc.ac.cn
,
Xiuling Han*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: xlhan@mail.sioc.ac.cn   Email: xylu@mail.sioc.ac.cn
,
Xiyan Lu*
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: xlhan@mail.sioc.ac.cn   Email: xylu@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 26 March 2015

Accepted after revision: 20 April 2015

Publication Date:
01 June 2015 (online)


Abstract

A Pd(OAc)2-catalyzed cyclization of N-(2-formyl­aryl)alkynamides initiated by the oxypalladation of alkynes was developed. The method provides a new approach for the efficient and atom-economical synthesis of 2-quinolinone derivatives.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Hartwig J. Organotransition Metal Chemistry . University Science Books; Sausalito (CA, USA): 2010
    • 1b Tsuji J. Transition Metal Reagents and Catalysts . John Wiley & Sons; New York: 2000
    • 1c Transition Metals for Organic Synthesis . Beller M, Bolm C. Wiley-VCH; Weinheim: 1998
    • 1d Transition Metal Catalyzed Reactions . Murahashi S, Davies SG. Blackwell Science; Oxford: 1999
    • 1e Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 1f Gao L, Xiong S, Wan C, Wang Z. Synlett 2013; 24: 1322

      For reviews on palladium-catalyzed formation of heterocyclic compounds, see:
    • 2a Palladium in Organic Synthesis . Tsuji J. Springer; New York: 2005
    • 2b Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E. Wiley-Interscience; New York: 2002
    • 2c Li JJ, Gribble GW. Palladium in Heterocyclic Chemistry . Pergamon; Oxford: 2000
    • 2d Patil S, Buolamwini J.-K. Curr. Org. Synth. 2006; 3: 477
    • 2e Zeni G, Larock RC. Chem. Rev. 2004; 104: 2285
    • 2f Gabriele B, Salerno G, Costa M. Synlett 2004; 2468
    • 2g Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644
    • 2h Majumdar KC, Samanta S, Sinha B. Synthesis 2012; 44: 817
    • 2i Gabriele B, Mancuso R, Salerno G. Eur. J. Org. Chem. 2012; 6825
    • 2j Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1

      For selected examples, see:
    • 3a Ma S, Lu X. J. Org. Chem. 1991; 56: 5120
    • 3b Zhu G, Lu X. J. Org. Chem. 1995; 60: 1087
    • 3c Ji J, Wang Z, Lu X. Organometallics 1996; 15: 2821
    • 3d Wang Z, Lu X, Lei A, Zhang Z. J. Org. Chem. 1998; 63: 3806
    • 3e Zhang Q, Lu X. J. Am. Chem. Soc. 2000; 122: 7604
    • 3f Zhao L, Lu X. Org. Lett. 2002; 4: 3903
    • 3g Zhao B, Lu X. Org. Lett. 2006; 8: 5987
    • 3h Liu G, Lu X. J. Am. Chem. Soc. 2006; 128: 16504
    • 3i Dai H, Lu X. Org. Lett. 2007; 9: 3077
    • 3j Yu X, Lu X. Org. Lett. 2009; 11: 4366
    • 3k Lin S, Lu X. Org. Lett. 2010; 12: 2536
    • 3l Han X, Lu X. Org. Lett. 2010; 12: 3336
    • 3m Shen K, Han X, Lu X. Org. Lett. 2013; 15: 1732
    • 3n Xia G, Han X, Lu X. Org. Lett. 2014; 16: 2058
  • 4 Zhao L, Lu X. Angew. Chem. Int. Ed. 2002; 41: 4343
  • 5 Zhang J, Han X. Adv. Synth. Catal. 2014; 356: 2465
    • 6a Chung H.-S, Woo W.-S. J. Nat. Prod. 2001; 64: 1579
    • 6b Ito C, Itoigawa M, Furukawa A, Hirano T, Murata T, Kaneda N, Hisada Y, Okuda K, Furukawa H. J. Nat. Prod. 2004; 67: 1800
    • 6c Grabley S, Thiericke R. Drug Discovery from Nature . Springer-Verlag; Berlin: 1999: 124
    • 6d He J, Lion U, Sattler I, Gollmick F.-A, Grabley S, Cai J, Meiner M, Schaumann K, Dechert U, Krohn M. J. Nat. Prod. 2005; 68: 1397

      For recent reviews on biological studies of 2-quinolinones, see:
    • 7a Poulie CB. M, Bunch L. ChemMedChem 2013; 8: 5
    • 7b Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. FEMS Microbiol. Rev. 2011; 35: 247

      For recent selected examples on medicinal activities of 2-quinolinones, see:
    • 8a Wolkenberg SE, Zhao Z, Thut C, Maxwell JW, McDonald TP, Kinose F, Reilly M, Lindsley CW, Hartman GD. J. Med. Chem. 2011; 54: 2351
    • 8b Sabbah DA, Simms NA, Wang W, Dong Y, Ezell EL, Brattain MG, Vennerstrom JL, Zhong HA. Bioorg. Med. Chem. 2012; 20: 7175
    • 8c Kumar N, Raj VP, Jayshree BS, Kar SS, Anandam A, Thomas S, Jain P, Rai A, Rao CM. Chem. Biol. Drug Des. 2012; 80: 291
    • 8d Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D, Rosethorne EM, Sandham DA, Sykes DA, Trifilieff A, Turner KL, Wissler E. Bioorg. Med. Chem. Lett. 2012; 22: 6280
    • 8e Doléans-Jordheim A, Veron JB, Fendrich O, Bergeron E, Montagut-Romans A, Wong YS, Furdui B, Freney J, Dumontet C, Boumendjel A. ChemMedChem 2013; 8: 652
    • 8f Chaturvedula PV, Mercer SE, Pin SS, Thalody G, Xu C, Conway CM, Keavy D, Signor L, Cantor GH, Mathias N, Moench P, Denton R, Macci R, Schartman R, Whiterock V, Davis C, Macor JE, Dubowchik GM. Bioorg. Med. Chem. Lett. 2013; 23: 3157

      For reviews, see:
    • 9a Jones G In Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; New York: 1996: 167
    • 9b Balasubramanian M, Keay JG In Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR, Rees CW, Scriven EF. V. Pergamon; Oxford: 1996: 245
    • 9c Larsen RD In Science of Synthesis . Vol. 15. Georg Thieme Verlag; Stuttgart: 2005: 551

      For recent examples, see:
    • 10a Wu J, Xiang S, Zeng J, Leow M, Liu X.-W. Org. Lett. 2015; 17: 222
    • 10b Wang Z, Xue L, He Y, Weng L, Fang L. J. Org. Chem. 2014; 79: 9628
    • 10c Mai W.-P, Sun G.-C, Wang J.-T, Song G, Mao P, Yang L.-R, Yuan J.-W, Xiao Y.-M, Qu L.-B. J. Org. Chem. 2014; 79: 8094
    • 10d Dong Y, Liu B, Chen P, Liu Q, Wang M. Angew. Chem. Int. Ed. 2014; 53: 3442
    • 10e Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 3568
    • 10f Ferguson J, Zeng F, Alwis N, Alper H. Org. Lett. 2013; 15: 1998
    • 10g Xie P, Wang Z.-Q, Deng G.-B, Song R.-J, Xia J.-D, Hu M, Li J.-H. Adv. Synth. Catal. 2013; 355: 2257
    • 10h Inamoto K, Kawasaki J, Hiroya K, Kondo Y, Doi T. Chem. Commun. 2012; 48: 4332

      For examples of N-transacylation reactions of amides with carboxylic acids, see:
    • 11a Michman M, Patai S, Shenfeld I. J. Chem. Soc. C 1967; 1337
    • 11b Michman M, Meidar D. J. Chem. Soc., Perkin Trans. 2 1972; 300
  • 12 Synthesis of 2-Quinolinones; General Procedure: Pd(OAc)2 (5 mol%), 4,4′-(MeO)2bpy (10 mol%), and MS (20% w/w) were suspended in AcOH–DCE (1:2, 2 mL) and stirred at room temperature for 5 min under N2. Substrate 1 (0.2 mmol) was added and the mixture was stirred at 80 °C. The progress of the reaction was monitored by TLC. Upon completion of the reaction, the mixture was purified by silica gel column chromatography to afford the corresponding product. 3-Acetylquinolin-2(1H)-one (2a) Yield: 31 mg (82%); white solid; 1H NMR (400 MHz, DMSO-d 6): δ = 12.09 (s, 1 H), 8.43 (s, 1 H), 7.85 (dd, J = 1.0, 7.8 Hz, 1 H), 7.62–7.58 (m, 1 H), 7.33 (d, J = 8.4 Hz, 1 H), 7.23–7.19 (m, 1 H), 2.61 (s, 3 H); 13C NMR (100 MHz, DMSO-d 6): δ = 197.8, 160.9, 143.5, 140.9, 133.3, 130.6, 129.8, 122.8, 118.5, 115.4, 31.1.
  • 13 Menashe N, Shvo Y. J. Org. Chem. 1993; 58: 7434