Synthesis 2015; 47(07): 976-984
DOI: 10.1055/s-0034-1380110
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Quinolines from Allylic Alcohols via Iridium-Catalyzed Tandem Isomerization/Cyclization Combined with Potassium Hydroxide

Shu-jie Chen
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Guo-ping Lu
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
,
Chun Cai*
Chemical Engineering College, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, Jiangsu 210094, P. R. of China   Email: c.cai@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 23 October 2014

Accepted after revision: 19 December 2014

Publication Date:
28 January 2015 (online)


Abstract

A new tandem catalytic process has been established for the synthesis of quinolines. This process utilizes the [IrCp*Cl2]2/KOH catalyzed isomerization/cyclization of allylic alcohols with 2-aminobenzyl alcohol. Both the secondary and primary allylic alcohols were investigated in this catalytic system to afford different substituted quinoline derivatives in moderate to good yields. A mechanism study showed the reaction following a tandem process integrating isomerization of allylic alcohols and oxidative cyclization of 2-aminobenzyl alcohol.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a van der Drift RC, Bouwman E, Drent E. J. Organomet. Chem. 2002; 650: 1
    • 1b Uma R, Crevisy C, Grée R. Chem. Rev. 2003; 103: 27
    • 1c Lorenzo-Luis P, Romerosa A, Serrano-Ruiz M. ACS Catal. 2012; 2: 1079
    • 1d Ahlsten N, Bartoszewicz A, Martín-Matute B. Dalton Trans. 2012; 41: 1660
  • 2 For a recent example, see: Nelson DJ, Fernandez-Salas JA, Truscott BJ, Nolan SP. Org. Biomol. Chem. 2014; 12: 6672
    • 3a Fogg DE, dos Santos EN. Coord. Chem. Rev. 2004; 248: 2365
    • 3b Wasilke JC, Obrey SJ, Baker RT, Bazan GC. Chem. Rev. 2005; 105: 1001
    • 4a Crévisy C, Wietrich M, Le Boulaire V, Uma R, Grée R. Tetrahedron Lett. 2001; 42: 395
    • 4b Uma R, Davies M, Crévisy C, Grée R. Tetrahedron Lett. 2001; 42: 3069
    • 4c Grée R, Cuperly D, Crévisy C. Synlett 2004; 93
    • 4d Cuperly D, Petrignet J, Crevisy C, Grée R. Chem. Eur. J. 2006; 12: 3261
    • 4e Petrignet J, Prathap I, Chandrasekhar S, Yadav JS, Grée R. Angew. Chem. Int. Ed. 2007; 46: 6297
    • 4f Cao HT, Roisnel T, Valleix A, Grée R. Eur. J. Org. Chem. 2011; 3430
    • 5a Bartoszewicz A, Jeżowska MM, Laymand K, Möbus J, Martín-Matute B. Eur. J. Org. Chem. 2012; 1517
    • 5b Ahlsten N, Martín-Matute B. Chem. Commun. 2011; 47: 8331
    • 5c Martín-Matute B, Ahlsten N, Bartoszewicz A, Agrawal S. Synthesis 2011; 2600
    • 5d Ahlsten N, Bermejo Gomez A, Martín-Matute B. Angew. Chem. Int. Ed. 2013; 52: 6273
    • 5e Gomez AB, Erbing E, Batuecas M, Vazquez-Romero A, Martín-Matute B. Chem. Eur. J. 2014; 20: 10703
    • 6a Wang M, Li C.-J. Tetrahedron Lett. 2002; 43: 3589
    • 6b Wang M, Yang X.-F, Li C.-J. Eur. J. Org. Chem. 2003; 998
    • 6c Yang X.-F, Wang M, Varma RS, Li C.-J. Org. Lett. 2003; 5: 657
  • 7 Bartoszewicz A, Martín-Matute B. Org. Lett. 2009; 11: 1749
  • 8 Sahli Z, Sundararaju B, Achard M, Bruneau C. Org. Lett. 2011; 13: 3964
    • 9a Sundbelg RJ In Kirk-Othmer Encyclopedia of Chemical Technology . Vol. 14. Kroschwitz JI, Howe-Grand M. Wiley; New York: 1995: 161
    • 9b Katritzky AR, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 9c Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878 ; and references therein
  • 10 Cho CS, Kim BT, Kim T.-J, Shim SC. Chem. Commun. 2001; 2576
    • 11a Cho CS, Kim BT, Choi H.-J, Kim T.-J, Shim SC. Tetrahedron 2003; 59: 7997
    • 11b Motokura K, Mizugaki T, Ebitani K, Kaneda K. Tetrahedron Lett. 2004; 45: 6029
    • 11c Martínez R, Brand GJ, Ramón DJ, Yus M. Tetrahedron Lett. 2005; 46: 3683
    • 11d Vander Mierde H, Ledoux N, Allaert B, Van Der Voort P, Drozdzak R, De Vos D, Verpoort F. New J. Chem. 2007; 31: 1572
    • 12a Cho CS, Ren WX, Shim SC. Bull. Korean Chem. Soc. 2005; 26: 1286
    • 12b Cho CS, Ren WX. J. Organomet. Chem. 2007; 692: 4182
    • 12c Chen BW. J, Chng LL, Yang J, Wei YF, Yang JH, Ying JY. ChemCatChem 2013; 5: 277
  • 13 Taguchi K, Sakaguchi S, Ishii Y. Tetrahedron Lett. 2005; 46: 4539
  • 14 Cho CS, Seok HJ, Shim SO. J. Heterocycl. Chem. 2005; 42: 1219
    • 15a Cho CS, Ren WX, Shim SC. Tetrahedron Lett. 2006; 47: 6781
    • 15b Cho CS, Ren WX, Yoon NS. J. Mol. Catal. A: Chem. 2009; 299: 117
    • 15c Phan NT. S, Nguyen TT, Nguyen KD, Vo AX. T. Appl. Catal., A 2013; 464: 128

      For transition-metal-free indirect Friedländer quinoline synthesis, see:
    • 16a Martinez R, Ramon DJ, Yus M. J. Org. Chem. 2008; 73: 9778
    • 16b Mierde HV, Van Der Voort P, Verpoort F. Tetrahedron Lett. 2008; 49: 6893
  • 17 Chen S.-J, Lu G.-P, Cai C. Synthesis 2014; 46: 1717

    • {[IrCp*Cl2]2} was also used as an efficient catalyst for the hydrogen autotransfer (or hydrogen-borrowing) process, see:
    • 18a Fujita K, Asai C, Yamaguchi T, Hanasaka F, Yamaguchi R. Org. Lett. 2005; 7: 4017
    • 18b Whitney S, Grigg R, Derrick A, Keep A. Org. Lett. 2007; 9: 3299
    • 18c Bhat S, Sridharan V. Chem. Commun. 2012; 48: 4701
    • 18d Ogawa S, Obora Y. Chem. Commun. 2014; 50: 2491
  • 19 Gonzalez-Lopez de Turiso F, Shin Y, Brown M, Cardozo M, Chen Y, Fong D, Hao X, He X, Henne K, Hu YL, Johnson MG, Kohn T, Lohman J, McBride HJ, McGee LR, Medina JC, Metz D, Miner K, Mohn D, Pattaropong V, Seganish J, Simard JL, Wannberg S, Whittington DA, Yu G, Cushing TD. J. Med. Chem. 2012; 55: 7667
    • 20a Soro B, Stoccoro S, Minghetti G, Zucca A, Cinellu MA, Gladiali S, Manassero M, Sansoni M. Organometallics 2005; 24: 53
    • 20b Rausch AF, Murphy L, Williams JA, Yersin H. Inorg. Chem. 2012; 51: 312
    • 21a Mierde HV, Voort PV. D, Verpoort F. Tetrahedron Lett. 2009; 50: 201
    • 21b Cho CS, Ren WX, Shim SC. Bull. Korean Chem. Soc. 2005; 26: 2038
    • 21c Isomerization/aldol-type reaction, see: Esteruelas MA, Hernández YA, López AM, Oliván M, Rubio L. Organometallics 2010; 27: 799
  • 22 Liang Y.-F, Zhou X.-F, Tang S.-Y, Huang Y.-B, Feng Y.-S, Xu H.-J. RSC Adv. 2013; 3: 7739
  • 23 White C, Yates A, Maitlis PM. Inorg. Synth. 1992; 29: 228
  • 24 Bartoszewicz A, Livendahl M, Martín-Matute B. Chem. Eur. J. 2008; 14: 10547
  • 25 Logan AW, Parker JS, Hallside MS, Burton JW. Org. Lett. 2012; 14: 2940
  • 26 Leleti RR, Hu B, Prashad M, Repič O. Tetrahedron Lett. 2007; 48: 8505
    • 27a Xu W, Zhou Y, Wang R, Wu G, Chen P. Org. Biomol. Chem. 2012; 10: 367
    • 27b Aramini A, Brinchi L, Germani R, Savelli G. Eur. J. Org. Chem. 2000; 1793
  • 28 Jacob J, Jones WD. J. Org. Chem. 2003; 68: 3563
  • 29 Jacob J, Cavalier CM, Jones WD, Godleski SA, Valente RR. J. Mol. Catal. A: Chem. 2002; 182: 565
  • 30 Sakashita S, Takizawa M, Sugai J, Ito H, Yamamoto Y. Org. Lett. 2013; 15: 4308
  • 31 Wang DW, Wang XB, Wang DS, Lu SM, Zhou YG, Li YX. J. Org. Chem. 2009; 74: 2780
  • 32 Kim SC, Gowrisankar S, Kim JN. Bull. Korean Chem. Soc. 2005; 26: 1001
  • 33 Kiss Á, Potor A, Hell Z. Catal. Lett. 2008; 125: 250
  • 34 Huiban M, Huet A, Barre L, Sobrio F, Fouquet E, Perrio C. Chem. Commun. 2006; 97
  • 35 Krasovskaya V, Krasovskiy A, Lipshutz BH. Chem. Asian J. 2011; 6: 1974