Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(03): 285-293
DOI: 10.1055/s-0034-1379946
DOI: 10.1055/s-0034-1379946
synpacts
Synthesizing Clickable Glutathione by Glutathione Synthetase Mutant for Detecting Protein Glutathionylation
Further Information
Publication History
Received: 12 October 2014
Accepted after revision: 21 November 2014
Publication Date:
12 January 2015 (online)
Abstract
In response to reactive oxygen species (ROS), glutathione plays an important role in redox signaling by forming a disulfide bond with protein cysteine residues, known as glutathionylation. We briefly review the roles of glutathione, ROS, and glutathionylation in redox regulation. We then introduce common biochemical methods for identifying glutathionylation and highlight our recent chemical method for selective detection of glutathionylation. The merits, limitations, and future applications of our approach are also discussed.
-
References
- 1 Redox Regulation of Cell Signaling and Its Clinical Application. Packer L, Yodoi J. Marcel Dekker; New York: 1999
- 2 Schafer FQ, Buettner GR. Free Radic. Biol. Med. 2001; 30: 1191
- 3a Scotcher J, Bythell BJ, Marshall AG. Anal. Chem. 2013; 85: 9164
- 3b Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP. J. Biol. Chem. 2003; 278: 33408
- 4 Morgan B, Ezerina D, Amoako TN. E, Riemer J, Seedorf M, Dick TP. Nat. Chem. Biol. 2013; 9: 119
- 5a Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, Ryu JH, Yoon J. J. Am. Chem. Soc. 2014; 136: 5351
- 5b Miller EW, Bian SX, Chang CJ. J. Am. Chem. Soc. 2007; 129: 3458
- 5c Gutscher M, Pauleau AL, Marty L, Brach T, Wabnitz GH, Samstag Y, Meyer AJ, Dick TP. Nat. Methods 2008; 5: 553
- 6a Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. J. Clin. Invest. 2004; 114: 1752
- 6b Paul BD, Sbodio JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH. Nature (London) 2014; 509: 96
- 7 Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T. Science 1995; 270: 296
- 8 Paulsen CE, Carroll KS. ACS Chem. Biol. 2010; 5: 47
- 9 Miller EW, Tulyathan O, Isacoff EY, Chang CJ. Nat. Chem. Biol. 2007; 3: 263
- 10 Murphy MP. Biochem. J. 2009; 417: 1
- 11a Chan J, Dodani SC, Chang CJ. Nat. Chem. 2012; 4: 973
- 11b Chen X, Tian X, Shin I, Yoon J. Chem. Soc. Rev. 2011; 40: 4783
- 12 Paulsen CE, Carroll KS. Chem. Rev. 2013; 113: 4633
- 13 Gallogly MM, Mieyal JJ. Curr. Opin. Pharmacol. 2007; 7: 381
- 14 Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD. Cancer Res. 2006; 66: 6800
- 15 Menon D, Board PG. J. Biol. Chem. 2013; 288: 25769
- 16a Garel MC, Domenget C, Caburi-Martin J, Prehu C, Galacteros F, Beuzard Y. J. Biol. Chem. 1986; 261: 14704
- 16b Niwa T, Naito C, Mawjood AH, Imai K. Clin. Chem. 2000; 46: 82
- 17 Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL. Nature (London) 2010; 468: 1115
- 18 Shao D, Fry JL, Han J, Hou X, Pimentel DR, Matsui R, Cohen RA, Bachschmid MM. J. Biol. Chem. 2014; 289: 7293
- 19 Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, Jia Y, Dickinson BC, Zhong J, Ye K, Chang CJ, Ho YS, Zhou J, Luo HR. Immunity 2012; 37: 1037
- 20 Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T. Biochemistry 2000; 39: 11121
- 21 Wellner VP, Anderson ME, Puri RN, Jensen GL, Meister A. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 4732
- 22 Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Nat. Cell. Biol. 2001; 3: 193
- 23 Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Löwenhielm HB, Holmgren A, Cotgreave IA. Arch. Biochem. Biophys. 2002; 406: 229
- 24 Su D, Gaffrey MJ, Guo J, Hatchell KE, Chu RK, Clauss TR, Aldrich JT, Wu S, Purvine S, Camp DG, Smith RD, Thrall BD, Qian WJ. Free Radic. Biol. Med. 2014; 67: 460
- 25 Fratelli M, Demol H, Puype M, Casaqrande S, Eberini I, Salmona M, Bonetto V, Menqozzi M, Duffieux F, Miclet E, Bachi A, Vandekerckhove J, Gianazza E, Ghezzi P. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 3505
- 26 Chiang BY, Chou CC, Hsieh FT, Gao S, Lin JC, Lin SH, Chen TC, Khoo KH, Lin CH. Angew. Chem., Int. Ed. 2012; 51: 5871
- 27 Bollinger JM. Jr, Kwon DS, Huisman GW, Kolter R, Walsh CT. J. Biol. Chem. 1995; 270: 14031
- 28 Samarasinghe KT. G, Munkanatta Godage DN. P, VanHecke GC, Ahn YH. J. Am. Chem. Soc. 2014; 134: 11566
- 29 Wang R, Islam K, Liu Y, Zheng W, Tang H, Lailler N, Blum G, Deng H, Luo M. J. Am. Chem. Soc. 2013; 135: 1048
- 30 Keillor JW, Castonguay R, Lherbet C. Methods Enzymol. 2005; 401: 449
- 31 Galant A, Arkus KA. J, Zubieta C, Cahoon RE, Jez JM. Plant Cell 2009; 21: 3450
- 32 Skipsey M, Davis BG, Edwards R. Biochem. J. 2005; 391: 567
- 33 Washtien W, Abeles RH. Biochemistry 1977; 16: 2485
- 34 Kiick KL, Saxon E, Tirrell DA, Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 19
- 35a Harsha HC, Molina H, Pandey A. Nat. Protoc. 2008; 3: 505
- 35b Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Nature (London) 2010; 468: 790
- 36 Söderdahl T, Enoksson M, Lundberg M, Holmgren A, Ottersen OP, Orrenius S, Bolcsfoldi G, Cotgreave IA. FASEB J. 2003; 17: 124
- 37 Yang YY, Ascano JM, Hang HC. J. Am. Chem. Soc. 2010; 132: 3640
- 38 Islam K, Chen Y, Wu H, Bothwell IR, Blum GJ, Zeng H, Dong A, Zheng W, Min J, Deng H, Luo M. Proc. Natl. Acad. Sci. U.S.A. 2013; 110: 16778
- 39 Zaro BW, Yang YY, Hang HC, Pratt MR. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 8146
- 40 Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF. Nat. Methods 2011; 9: 84
- 41 Shelton MD, Chock PB, Mieyal JJ. Antioxid. Redox. Signal. 2005; 7: 348
- 42 Sun K, Kusminski CM, Scherer PE. J. Clin. Invest. 2011; 121: 2094
For examples, see:
For reviews, see