Synlett 2015; 26(05): 681-687
DOI: 10.1055/s-0034-1379888
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Arylalkylation of N-Aryl Acrylamides with Azobisalkylnitriles

Qingshan Tian
a   Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Email: kuangcx@tongji.edu.cn
,
Ping He
a   Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Email: kuangcx@tongji.edu.cn
,
Chunxiang Kuang*
a   Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. of China   Email: kuangcx@tongji.edu.cn
b   Key Laboratory of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 28 October 2014

Accepted after revision: 14 December 2014

Publication Date:
29 January 2015 (online)


Abstract

A novel metal-free arylalkylation of N-aryl acrylamides with readily available azobisalkylnitriles leading to cyano-containing oxindoles has been developed. The use of readily available azobisalkylnitriles and DTBP as oxidant makes this protocol environmentally benign and practical.

Supporting Information

 
  • References and Notes

    • 1a Schore NE. Comprehensive Organic Synthesis . Pergamon Press; New York: 1991
    • 1b Bishop R. Comprehensive Organic Synthesis . Pergamon Press; New York: 1991
    • 2a Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds . Patai S, Rappaport Z. Wiley; New York: 1983
    • 2b Larock RC. Comprehensive Organic Transformations . VCH; New York: 1989
    • 2c Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 3a Leow D, Li G, Mei M.-T, Yu J.-Q. Nature (London, U.K.) 2012; 486: 518
    • 3b Dai H.-X, Li G, Zhang X.-G, Stepan AF, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 7567
    • 3c Yang Y.-F, Cheng G.-J, Liu P, Leow D, Sun T.-Y, Chen P, Zhang X, Yu J.-Q, Wu Y.-D, Houk KN. J. Am. Chem. Soc. 2014; 136: 344
    • 4a Kornblum N, Smiley RA, Blackwood RK, Iffland DC. J. Am. Chem. Soc. 1955; 77: 6269
    • 4b Lindley J. Tetrahedron 1984; 40: 1433
    • 5a Ellis GP. M, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
    • 5b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 6a Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 6b Ding S, Jiao N. J. Am. Chem. Soc. 2011; 133: 12374
    • 6c Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
    • 6d Kim J, Chang S. J. Am. Chem. Soc. 2010; 132: 10272
    • 7a Wan W.-M, Pickett PD, Savina DA, McCormick CL. Polym. Chem. 2014; 5: 819
    • 7b Li L, Shu X, Zhu J. Polymer 2012; 52: 5010
  • 8 Xu H, Liu P.-T, Li Y.-H, Han F.-S. Org. Lett. 2013; 15: 3354
    • 9a Jensen BS. CNS Drug Rev. 2002; 8: 353
    • 9b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 68: 2209
    • 9c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748

      For selected examples, see:
    • 10a Xu X, Tang Y, Li X, Hong G, Fang M, Du X. J. Org. Chem. 2014; 79: 446
    • 10b Shen T, Yuan Y, Song S, Jiao N. Chem. Commun. 2014; 50: 4115
    • 10c Wei WT, Zhou MB, Fan JH, Liu W, Song RJ, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638

      For selected examples, see:
    • 11a Zhou SL, Guo LN, Wang H, Duan XH. Chem. Eur. J. 2013; 19: 12970
    • 11b Yang F, Klumphu P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 11c Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322
    • 11d Zhou SL, Guo LN, Wang S, Duan XH. Chem. Commun. 2014; 50: 3589
    • 11e Li Z, Zhang Y, Zhang L, Liu ZQ. Org. Lett. 2014; 16: 382
    • 12a Yin F, Wang X. Org. Lett. 2014; 16: 1128
    • 12b Li Y, Sun M, Wang H, Tian Q, Yang S. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 12c Wei XH, Li YM, Zhou AX, Yang TT, Yang SD. Org. Lett. 2013; 15: 4158
    • 13a Jaegli S, Dufour J, Wei HL, Piou T, Duan XH, Vors JP, Neuville L, Zhu J. Org. Lett. 2010; 12: 4498
    • 13b An G, Zhou W, Zhang G, Sun H, Han J, Pan Y. Org. Lett. 2010; 12: 4482
  • 14 Wu T, Mu X, Liu G.-S. Angew. Chem. Int. Ed. 2011; 50: 12578

    • For selected examples, see:
    • 15a Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 15b Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 15c Li L, Deng M, Zheng S, Xiong Y, Tan B, Liu XY. Org. Lett. 2014; 16: 504
  • 16 General Procedure of the Synthesis of Cyano-Containing Oxindoles 2a–t and 3a–f An oven-dried 15 mL screw-capped vial containing 1 (0.2 mmol), AIBN (0.4 mmol), and DTBP (0.3 mmol) were evacuated and purged with Ar gas three times. Then, DCE (2.00 mL) was added via syringe. The reaction mixture was stirred at 80 °C for 16 h. After cooling to r.t., the solvent was evaporated and then the residue was purified on a silica gel column using PE–EtOAc (4:1) as eluent to give the desired product 2 or 3. Three Representative Examples 3-(1,3-Dimethyl-2-oxoindolin-3-yl)-2,2-dimethylpropanenitrile (2a) White solid; mp 118 °C. 1H NMR (400 MHz, CDCl3): δ = 7.35 (m, 2 H), 7.14 (t, J = 7.5 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 3.27 (s, 3 H), 2.35 (d, J = 14.6 Hz, 1 H), 2.19 (d, J = 14.6 Hz, 1 H), 1.38 (s, 3 H), 1.19 (s, 3 H), 1.11 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.67, 143.16, 130.93, 128.65, 124.70, 123.97, 122.48, 108.52, 47.01, 46.56, 30.72, 29.70, 27.44, 26.65, 26.39. IR (thin film): νmax = 3059, 2967, 2936, 2233, 1715, 1609, 1493, 1469, 1377, 1349, 1338, 1136, 1021, 774 cm–1. HRMS (ESI-TOF): m/z calcd for C15H18N2NaO+: 265.1317 [M + Na]+; found: 265.1318. 3-(1-Benzyl-3-methyl-2-oxoindolin-3-yl)-2,2-dimethylpropanenitrile (2b) Clear oil. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.31 (m, 5 H), 7.30–7.24 (m, 2 H), 7.11 (t, d, J = 7.8 Hz, 1 H), 6.87 (d, J = 7.8 Hz, 1 H), 5.16 (d, J = 15.5 Hz, 1 H), 4.76 (d, J = 15.5 Hz, 1 H), 2.39 (d, J = 14.6 Hz, 1 H), 2.26 (d, J = 14.7 Hz, 1 H), 1.43 (s, 3 H), 1.23 (s, 3 H), 1.06 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 179.75, 142.30, 135.77, 130.87, 128.77, 128.52, 127.69, 127.61, 124.88, 124.17, 122.48, 109.51, 47.05, 46.24, 44.10, 30.80, 29.77, 28.12, 26.36. IR (thin film): νmax = 2975, 2926, 1708, 1612, 1489, 1468, 1453, 1380, 1357, 1177, 756 cm–1. HRMS (ESI-TOF): m/z calcd for C21H22N2NaO+: 341.1630 [M + Na]+; found: 341.1633. 2-[(1,3-Dimethyl-2-oxoindolin-3-yl)methyl]-2-methylbutanenitrile (3a) White solid; mp 124 °C. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.30 (m, 2 H), 7.14 (dd, J = 15.7, 7.8 Hz, 1 H), 6.93 (d, J = 7.7 Hz, 1 H), 3.27 (s, 3 H), 2.45 (d, J = 14.6 Hz, 1 H), 2.27 (q, J = 14.7 Hz, 1 H), 2.07 (d, J = 14.6 Hz, 1 H), 1.59–1.53 (m, 1 H), 1.46–1.33 (m, 4 H), 1.04–0.96 (m, 6 H). 13C NMR (100 MHz, CDCl3): δ = 180.04, 179.52, 143.36, 143.02, 131.47, 130.86, 128.63, 138.56, 124.92, 124.26, 123.28, 122.78, 122.57, 122.27, 108.60, 108.44, 46.94, 46.88, 45.40, 44.46, 35.64, 35.49, 35.30, 33.14, 27.84, 27.59, 26.42, 26.38, 25.82, 22.73, 9.12, 8.98. IR (thin film): νmax = 2986, 2927, 2235, 1710, 1609, 1494, 1470, 1361, 1349, 1338, 1136, 1021, 769 cm–1. HRMS (ESI-TOF): m/z calcd for C16H20N2NaO+: 279.1473 [M + Na]+; found: 279.1474.