Synlett, Inhaltsverzeichnis Synlett 2015; 26(02): 250-258DOI: 10.1055/s-0034-1379603 letter © Georg Thieme Verlag Stuttgart · New YorkTotal Synthesis of Quercitols: (+)-allo-, (–)-proto-, (+)-talo-, (–)-gala-, (+)-gala-, neo-, and (–)-epi-Quercitol Authors Institutsangaben Johannes Aucktor Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany eMail: reinhard.brueckner@organik.chemie.uni-freiburg.de Reinhard Brückner* Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104 Freiburg, Germany eMail: reinhard.brueckner@organik.chemie.uni-freiburg.de Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Abstract The cyclohexenenones exo- and endo-2 were converted into the cyclohexenyl acetates exo- and endo-3 and exo- and endo-5 with a diastereoselectivity of >99:1 (2 steps). Ether cleavage with DDQ in CH2Cl2/H2O (20:1) and in situ ketal hydrolysis afforded the cyclohexenones 6 and 7 in up to 83% and 87% yield, respectively. Compound 6 was converted into (+)-allo- and (–)-proto-quercitol with a diastereoselectivity of 100:0 (4 steps). Moreover, 6 was carried on to (–)-talo-quercitol whereas 7 furnished the four remaining title quercitols (3–5 steps) including both enantiomers of gala-quercitol. Key words Key wordscyclohexenones - diastereoselectivity - ether cleavage - α-hydroxy ketone - oxidation - reduction Volltext Referenzen References and Notes 1 Aucktor J, Anselmi C, Brückner R, Keller M. Synlett 2014; 25: 1312 2a Reviews: Hudlicky T, Cebulak M. Cyclitols and their Derivatives: A Handbook of Physical, Spectral, and Synthetic Data. Verlag Chemie; Weinheim: 1993 2b Gueltekin MS, Celik M, Balci M. Curr. Org. Chem. 2004; 8: 1159 3 Synthesis of (+)-allo-quercitol (8a): Yadav JS, Maiti A, Sankar AR, Kunwar AC. J. Org. Chem. 2001; 66: 8370 4 C-3 of this compound represents a chirotopic nonstereogenic center. Because of the latter attribute it suffices to connect C-3 and 3-OH by an ‘ordinary bond’ rather than by a wedge or by hatches. Syntheses of (–)-proto-quercitol (8b): 5a McCasland GE, Naumann MO, Durham LJ. J. Org. Chem. 1968; 33: 4220 5b Angyal SJ, Odier L. Carbohydr. Res. 1982; 101: 209 5c Gültekin MS, Çelik M, Turkut E, Tanyeli C, Balci M. Tetrahedron: Asymmetry 2004; 15: 453 ; corrigendum: Tetrahedron: Asymmetry 2004, 15, 1959 Syntheses of (+)-talo-quercitol (8c): 6a McCasland GE, Furuta S, Johnson LF, Shoolery JN. J. Am. Chem. Soc. 1961; 83: 2335 6b Angelaud R, Babot O, Charvat T, Landais Y. J. Org. Chem. 1999; 64: 9613 6c Hydloft L, Madsen R. J. Am. Chem. Soc. 2000; 122: 8444 6d Ref. 3. Syntheses of (–)-gala-quercitol (8d): 7a Ref. 6a. 7b Dubreuil D, Cleophax J, Vieira de Almeida M, Verre-Sebrié C, Liaigre J, Vass G, Gero SD. Tetrahedron 1997; 53: 16747 7c Ref. 6b. 7d Maezaki N, Nagahashi N, Yoshigami R, Iwata C, Tanaka T. Tetrahedron Lett. 1999; 40: 3781 7e Ref. 6c. 7f Shih T.-L, Lin Y.-L. Synth. Commun. 2005; 35: 1809 7g Murugan A, Yadav AK, Gurjar MK. Tetrahedron Lett. 2005; 46: 6235 Syntheses of (+)-gala-quercitol (ent-8d): 8a Ref. 5b. 8b Shih T.-L, Lin Y.-L, Kuo W.-S. Tetrahedron 2005; 61: 1919 Syntheses of neo-quercitol (8e): 9a Ref. 5b. 9b Kühlmeyer R, Keller R, Schwesinger R, Netscher T, Fritz H, Prinzbach H. Chem. Ber. 1984; 117: 1765 9c Ref. 8b. 9d Murali C, Gurale BP, Shashindhar MS. Eur. J. Org. Chem. 2010; 755 9e Aydin G, Savran T, Aktaş F, Baran A, Balci M. Org. Biomol. Chem. 2013; 11: 1511 Syntheses of (–)-epi-quercitol (8f): 10a Ref. 7b. 10b Biamonte MA, Vasella A. Helv. Chim. Acta 1998; 81: 688 10c Horne G, Potter BV. L. Chem. Eur. J. 2001; 7: 80 10d Ref. 7f; therein 8f was referred to as dextrorotatory. In accordance therewith, synthetic ent-8f was referred to as levorotatory in ref. 8b. The two findings disagree with our synthetic 8f being levorotatory (Scheme 7). 11 DDQ oxidations of primary PMB ethers of primary or secondary alcohols giving p-methoxybenzaldehyde plus these alcohols: Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 885 12 DDQ oxidations of secondary PMB ethers (specifically: p-methoxybenzhydryl ethers) of primary alcohols giving p-methoxybenzophenone plus these alcohols: Sharma GV. M, Prasad TR, Rakesh SB. Synth. Commun. 2004; 34: 941 13 DDQ oxidations of secondary PMB esters of carboxylic acids giving p-methoxyacetophenone plus these carboxylic acids: Yoo S.-E, Kim HR, Yi KY. Tetrahedron Lett. 1990; 31: 5913 14 The benzylic C–O bond in the 1,4-dioxane moieties of the tricyclic cyclohexanetriol triacetates1 41 was cleaved with DDQ in CH2Cl2/H2O (20:1), and the resulting alcohols were benzoylated. This provided the nonhydrolyzable spiroketals 9a–e in overall yields around 90% (Scheme 8). 15a In the tricyclic cyclohexanetriol triacetate 41b (which now rendered the spiroketal 9b by oxidative cleavage as depicted in Scheme 8) we had been able to cleave1 the benzylic C–O bond by an ionic hydrogenolysis with Et3SiH/F3CCO2H.15b We then effected a benzylic bromination, whereupon treatment with Zn induced a reductive elimination; it ring-opened the spiroketal moiety.1 The scope and limitations of that approach have not yet been investigated. 15b Ma Z, Hu H, Xiong W, Zhai H. Tetrahedron 2007; 63: 7523 16 pK a1 of DDQ-H2 (16): Akutagawa T, Saito G. Bull. Chem. Soc. Jpn. 1995; 68: 1753 17 Ammonolysis of pentaacetate rac-25: see ref. 22c. 18 In the present work we terminated the synthesis of each quercitol by an ammonolysis, the substrate of which was a pentaacetate (Scheme 4: 25 → 8g, 26 → 8a; Scheme 7: 37 → 8f), a triacetate (Scheme 5: 29 → 8c; Scheme 6: 35 → 8d; Scheme 7: 39 → 8e) or a mixed oligocarboxylate (Scheme 6; post-34 → ent-8d). Each ammonolysis was executed under conditions described by Balci et al.22c for two analogous ammonolyses. 19 NMR Data of (–)-proto-Quercitol (8b, Figure 1) 1H NMR (500 MHz, D2O): δ = 1.80 (ddd, J gem = 14.0 Hz, J 6-Hax,1 = 11.7 Hz, J 6-Hax,5 = 3.1 Hz, 1 H, 6-Hax), 1.98 (dddd, J gem = 14.0 Hz, J 6-Heq,1 = 4.8 Hz, J 6-Heq,5 = 3.3 Hz, 4 J 6-Heq,4 = 1.2 Hz, 1 H, 6-Heq), 3.55 (dd, J 2,3 = 9.7 Hz, J 2,1 = 9.1 Hz, 1 H, 2-H), 3.70 (dd, J 3,2 = 9.7 Hz, J 3,4 = 3.3 Hz, 1 H, 3-H), 3.74 (ddd, J 1,6-Hax = 11.7 Hz, J 1,2 = 9.1 Hz, J 1,6-Heq = 4.8 Hz, 1 H, 1-H), 3.92 (ddd, J 4,5 = 3.6 Hz, J 4,3 = 3.3 Hz, 4 J 4,6-Heq = 1.2 Hz, 1 H, 4-H), 4.01 (ddd, J 5,4 = 3.6 Hz, J 5,6-Heq = 3.3 Hz, J 5,6-Hax = 3.1 Hz, 1 H, 5-H) ppm. 20 Preparation of cyclohexenetriol triacetate 20 from cyclohexa-1,4-diene by an oxidation to endo-peroxide/hydroperoxide and an enzymatic kinetic resolution: see ref. 5c. 21 Preparation of cyclohexenetriol triacetate ent-20 from d-(–)-quinic acid: Shih T.-L, Kuo W.-S, Lin Y.-L. Tetrahedron Lett. 2004; 45: 5751 Syntheses of cyclohexenetriol triacetate rac-20 from cyclohexa-1,4-diene: 22a Seçen H, Salamci E, Sütbeyaz Y, Balci M. Synlett 1993; 609 22b Gültekin MS, Salamci E, Balci M. Carbohydr. Res. 2003; 338: 1615 22c Salamci E, Seçen H, Sütbeyaz Y, Balci M. J. Org. Chem. 1997; 62: 2453 22d Salamci E, Seçen H, Sütbeyaz Y, Balci M. Synth. Commun. 1997; 27: 2223 23 Method: Dupau P, Epple R, Thomas AA, Fokin VV, Sharpless KB. Adv. Synth. Catal. 2002; 344: 421 24 Dihydroxylation of cyclohexenetriol triacetate 20 with OsO4/ N-methylmorpholine-N-oxide: see ref. 5c. 25 Dihydroxylations of cyclohexenetriol triacetates ent-20 and rac-20 with KMnO4: see ref. 21, 22a,c. OH-Directed triacetoxyborohydride reductions of β-hydroxyketones were studied in depth by 26a Evans DA, Chapman KT. Tetrahedron Lett. 1986; 27: 5939 26b Evans DA, Chapman KT, Carreira EM. J. Am. Chem. Soc. 1988; 110: 3560 OH-Directed diastereoselective triacetoxyborohydride reduction of an α-hydroxycyclohexenone: 26c Bao X, Cao Y.-X, Chu W.-D, Qu H, Du J.-Y, Zhao X.-H, Ma X.-Y, Wang C.-T, Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 14167 OH-Directed diastereoselective triacetoxyborohydride reduction of an α-hydroxybi-cyclo[2.2.2]octanone: 26d Griffith DR, Botta L, St Denis TG, Snyder SA. J. Org. Chem. 2014; 79: 88 OH-Directed diastereoselective triacetoxyborohydride reduction of a 4-hydroxydihydro-2H-pyran-3(4H)-one: 26e Shangguan N, Kiren S, Williams LJ. Org. Lett. 2007; 9: 1093 27 Example for stereocomplementary diastereoselective α-hydroxycyclohexanone reductions with LiBH(s-Bu)3 vs. triacyloxyborohydride: Breit B, Bigot A. Chem. Commun. 2008; 6498 28 The ammonolysis of the pentaacetate ent-26 was described in ref. 8b. 29 NMR Data of (+)-allo-Quercitol (8a, Figure 2) 1H NMR (500 MHz, D2O; 323 K): δ = 1.59 (ddd, J gem = 14.1 Hz, J 6-Hax,5 = 9.4 Hz, J 6-Hax,1 = 3.3 Hz, 1 H, 6-Hax), 2.12 (ddd, J gem = 14.1 Hz, J 6-Heq,1 = 6.1 Hz, J 6-Heq,5 = 4.4 Hz, 1 H, 6-Heq), 3.56 (dd, J 4,5 = 8.0 Hz, J 4,3 = 3.1 Hz, 1 H, 4-H), 3.79 (dd, J 2,3 = 3.1 Hz, J 2,1 = 3.1 Hz, 1 H, 2-H), 4.01 (ddd, J 3,2 = 3.1 Hz, J 3,4 = 3.1 Hz, 4 J 3,1 = 1.3 Hz, 1 H, 3-H), 4.03 (ddd, J 5,6-Hax = 9.4 Hz, J 5,4 = 8.0 Hz, J 5,6-Heq = 4.4 Hz, 1 H, 5-H), 4.05 (dddd, J 1,6-Heq = 6.1 Hz, J 1,6-Hax = 3.3 Hz, J 1,2 = 3.1 Hz, 4 J 1,3 = 1.3 Hz, 1 H, 1-H) ppm. 30 Method: Fujii H, Oshima K, Utimoto K. Chem. Lett. 1991; 1847 31 Still WC, Kahn M, Mitra A. J. Org. Chem. 1978; 43: 2923 32 Synthesis of cyclohexenetriol triacetate 30 by an asymmetric eliminative epoxide opening: de Sousa SE, O’Brien P, Pilgram CD. Tetrahedron 2002; 58: 4643 33 Dihydroxylations of cyclohexenetriol triacetate ent-30 with KMnO4 or RuO4 gave an almost 1:1 ratio of the corresponding glycols ent-28 and ent-29; after peracetylation, the combined overall yield was 74%, see ref. 8b. 34 NMR Data of (+)-talo-Quercitol (8c, Figure 3) 1H NMR (500 MHz, D2O, 313 K): δ = 1.82–1.92 (m, 2 H, 6-H2), 3.71 (dd, J 4,3 = 9.9 Hz, J 4,5 = 3.1 Hz, 1 H, 4-H), 3.75 (dd, J 3,4 = 9.9 Hz, J 3,2 = 2.7 Hz, 1 H, 3-H), 3.99 (ddd, J 1,6-Hax = 10.6 Hz, J 1,6-Heq = 5.9 Hz, J 1,2 = 2.8 Hz, 1 H, 1-H), 4.03 (ddd, J 2,1 = 2.8 Hz, J 2,3 = 2.7 Hz, 4 J 2,6-Heq = 1.2 Hz, 1 H, 2-H), 4.07 (ddd, J 5,6-Heq = 3.3 Hz, J 5,6-Hax = 3.3 Hz, J 5,4 = 3.3 Hz, 1 H, 5-H) ppm. 35 For a different synthesis of cyclohexenetriol triacetate 32: see ref. 32. 36 Synthesis of cyclohexenetriol triacetate ent-32 from d-(–)-quinic acid: see ref. 8b. 37 Synthesis of cyclohexenetriol triacetate rac-32 from cyclohexa-1,4-diene: see ref. 22c. 38 Dihydroxylation of cyclohexenetriol triacetate rac-32 with OsO4/NMO: see ref. 22c. 39 Dihydroxylations of cyclohexenetriol triacetate ent-32 with KMnO4 or RuO4: see ref. 8b. 40 NMR Data of (–)-gala-Quercitol (8d, Figure 4) 1H NMR (500 MHz, D2O): δ = 1.72 (ddd, J gem = 12.3 Hz, J 6-Hax,5 = 11.4 Hz, J 6-Hax,1 = 10.6 Hz, 1 H, 6-Hax), 2.00 (dddd, J gem = 12.3 Hz, J 6-Heq,1 = 4.6 Hz, J 6-Heq,5 = 4.4 Hz, 4 J 6-Heq,4 = 1.3 Hz, 1 H, 6-Heq), 3.67 (dd, J 2,1 = 9.1 Hz, J 2,3 = 3.2 Hz, 1 H, 2-H), 3.79 (ddd, J 1,6-Hax = 10.6 Hz, J 1,2 = 9.1 Hz, J 1,6-Heq = 4.6 Hz, 1 H, 1-H), 3.92 (ddd, J 4,3 = 4.3 Hz, J 4,5 = 3.1 Hz, 4 J 4,6-Heq = 1.3 Hz, 1 H, 4-H), 4.00 (dd, J 3,4 = 4.3 Hz, J 3,2 = 3.2 Hz, 1 H, 3-H), 4.01 (ddd, J 5,6-Hax = 11.4 Hz, J 5,6-Heq = 4.4 Hz, J 5,4 = 3.1 Hz, 1 H, 5-H) ppm. Method: 41a Adkins H, Roebuck AK. J. Am. Chem. Soc. 1948; 70: 4041 41b Ogawa S, Aoki Y, Takagaki T. Carbohydr. Res. 1987; 164: 499 41c Doddi VR, Kumar A, Vankar YD. Tetrahedron 2008; 54: 9117 42 In principle, the epoxidation of cyclohexenol 34 may lead to the syn- and/or the anti-epoxide (Scheme 9). If the Fürst–Plattner rule is respected, the ring opening of either epoxide should deliver the respective ‘diaxially substituted dihydroxyformate’ initially, that is, compounds 43 and iso-43, respectively. In the sequel, each of these dihydroxyformates would furnish (+)-gala-quercitol (ent-8d). 43 NMR Data of (+)-gala-Quercitol (ent-8d, Figure 5) 1H NMR (500 MHz, CD3OD): δ = 1.77 (ddd, J gem = 12.3 Hz, J 6-Hax,1 = 10.4 Hz, J 6-Hax,5 = 10.4 Hz, 1 H, 6-Hax), 1.90 (dddd, J gem = 12.3 Hz, J 6-Heq,1 = 4.4 Hz, J 6-Heq,5 = 4.4 Hz, 4 J 6-Heq,2 = 1.2 Hz, 1 H, 6-Heq), 3.64 (dd, J 4,5 = 8.5 Hz, J 4,3 = 3.2 Hz, 1 H, 4-H), 3.73 (ddd, J 5,6-Hax = 10.0 Hz, J 5,4 = 8.6 Hz, J 5,6-Heq = 4.4 Hz, 1 H, 5-H), 3.81 (dd, J 2,3 = 5.0 Hz, J 2,1 = 2.9 Hz, 1 H, 2-H), 3.91 (dd, J 3,2 = 5.0 Hz, J 3,4 = 3.3 Hz, 1 H, 3-H), 3.95 (ddd, J 1,6-Hax = 10.6 Hz, J 1,6-Heq = 4.4 Hz, J 1,2 = 2.9 Hz, 1 H, 1-H) ppm. 44 Dihydroxylations of cyclohexenetriol triacetate ent-38 with KMnO4 or RuO4 provided the glycols ent-39 and ent-40 with dr = 58:42 in 65% and 77% combined yield, respectively; see ref. 8b. First descriptions of the AD-mix protocols: 45a Sharpless KB, Amberg W, Bennani YL, Crispino GA, Hartung J, Jeong K.-S, Kwong H.-L, Morikawa K, Wang Z.-M, Xu D, Zhang X.-L. J. Org. Chem. 1992; 57: 2768 ; (in the presence of MeSO2NH2) 45b See footnote 6 in: Jeong K.-S, Sjö P, Sharpless KB. Tetrahedron Lett. 1992; 33: 3833 ; (in the absence of MeSO2NH2) Recent reviews: 45c Zaitsev AB, Adolfsson H. Synthesis 2006; 1725 45d Noe MC, Letavic MA, Snow SL, McCombie S. Org. React. 2005; 66: 109 45e Kolb HC, Sharpless KB In Transition Metals for Organic Synthesis . Vol. 2. Beller M, Bolm C. Wiley-VCH; Weinheim: 2004: 275-298 46 The relative amounts of the quercitol pentaacetates 36 and 37 were determined from the integrals over non-overlapping 1H NMR signals (400 MHz, CDCl3) of this mixture. Their resonances are printed in boldface in the following enumerations:NMR Data of Pentaacetate 36 1H NMR (400 MHz, CDCl3): δ = 1.53 (dt, J gem = 12.5 Hz, J 6-Hax,1 = J 6-Hax,5 = 11.7 Hz, 1 H, 6-Hax), 1.99 (s, 6 H, 2 × O2CCH3), 2.02 (s, 6 H, 2 × O2CCH3), 2.15 (s, 3 H, 3-O2CCH3), 2.52 (dt, J gem = 12.5 Hz, J 6-Heq,1 = J 6-Heq,5 = 5.1 Hz, 1 H, 6-Heq), 5.03 (dd, J 2,1 = 10.2 Hz, J 2,3 = 2.9 Hz, 2 H, 2-H and 4-H), 5.24 (ddd, J 1,6-Hax = 11.7 Hz, J 1,2 = 10.2 Hz, J 1,6-Heq = 5.1 Hz, 2 H, 1-H and 5-H), 5.59 (t, J 3,2 = J 3,4 = 2.9 Hz, 1 H, 3-H) ppm.NMR Data of Pentaacetate 37 (Figure 6) 1H NMR (400 MHz, CDCl3): δ = 1.99 (s, 3 H, O2CCH3), 2.00 (s, 3 H, O2CCH3), 2.01 (s, 3 H, O2CCH3), 2.03 (s, 3 H, O2CCH3), 2.04 (ddd, J 6-Hax,1 = 12.5 Hz, J gem = 12.1 Hz, J 6-Hax,5 = 11.9 Hz, 1 H, 6-Hax), 2.17 (s, 3 H, O2CCH3), 2.22 (dddd, J gem = 12.1 Hz, J 6-Heq,5 = 5.2 Hz, J 6-Heq,1 = 4.7 Hz, 4 J 6-Heq,2 = 1.3 Hz, 1 H, 6-Hax), 4.95 (ddd, J 5,6-Hax = 11.9 Hz, J 5,4 = 9.7 Hz, J 5,6-Heq = 5.2 Hz, 1 H, 5-H), 4.97 (dd, J 3,4 = 10.5 Hz, J 3,2 = 2.8 Hz, 1 H, 3-H), 4.98 (ddd, J 1,6-Hax = 12.5 Hz, J 1,6-Heq = 4.7 Hz, J 1,2 = 2.6 Hz, 1 H, 1-H), 5.40 (dd, J 4,3 = 10.5 Hz, J 4,5 = 9.7 Hz, 1 H, 4-H), 5.55 (ddd, J 2,3 = 2.8 Hz, J 2,1 = 2.6 Hz, 4 J 2,6-Heq, = 1.3 Hz, 1 H, 2-H) ppm. 47 The authors of ref. 8b peracetylated the mixture of glycols ent-39 and ent-40 (mentioned in ref. 44) to obtain the pentaacetates (meso)-36 and ent-37. They separated the latter compounds by flash chromatography on silica gel, which we could not. Complementary diastereocontrol of cyclohexene dihydroxylations due to the presence of DHQ- vs. DHQD-substituted ligands: 48a Chida N, Ohtsuka M, Nakazawa K, Ogawa S. J. Org. Chem. 1991; 56: 2976 48b Mahapatra T, Nanda S. Tetrahedron: Asymmetry 2010; 21: 2199 49 According to ref. 8b, an ammonolysis of the pentaacetate (meso)-36 (mentioned in ref. 47) rendered the quercitol 8e. Likewise, an ammonolysis of the pentaacetate ent-37 (also mentioned in ref. 47) gave the quercitol ent-8f. Both quercitols were diastereomerically pure. 50 NMR Data of neo-Quercitol (8e, Figure 7) 1H NMR (500 MHz, D2O): δ = 1.32 (dt, J gem = 12.3 Hz, J 6-Hax,1 = J 6-Hax,5 = 11.8 Hz, 1 H, 6-Hax), 2.18 (dt, J gem = 12.3 Hz, J 6-Heq,1 = J 6-Heq,5 = 4.8 Hz, 1 H, 6-Heq), 3.44 (dd, J 2,1 = 9.7 Hz, J 2,3 = 3.0 Hz, 2 H, 2-H and 4-H), 3.79 (ddd, J 1,6-Hax = 11.8 Hz, J 1,2 = 9.7 Hz, J 1,6-Heq = 4.8 Hz, 2 H, 1-H and 5-H), 4.03 (t, J 3,2 = J 3,4 = 3.0 Hz, 1 H, 3-H) ppm. 51 NMR Data of (–)-epi-Quercitol (8f, Figure 8) 1H NMR (400 MHz, D2O): δ = 1.74 (mc, 1H, 6-Hax), 1.96 (mc, 1 H, 6-Heq), 3.67 - 3.54 (m, 3 H, 3-H, 4-H, 5-H), 3.77 (ddd, J 1,6-Hax = 12.3 Hz, J 1,6-Heq = 4.5 Hz, J 1,2 = 2.7 Hz, 1 H, 1-H), 3.98 (mc, 1 H, 2-H) ppm. 52 We reached five quercitols of the present study via a total of four diastereoisomeric cyclohexenetriol triacetate precursors: 20 [Scheme 4; → (–)-proto-quercitol (8b)], 30 [Scheme 5; → (+)-talo-quercitol (8c)], 32 [Scheme 6; → (–)-gala-quercitol (8d)], and 38 [Scheme 7; → neo-quercitol (8e) and (–)-epi-quercitol (8f)]. The value of the eight stereoisomeric cyclohexenetriol triacetates as precursors of synthetic cyclohexitols was recognized previously by Balci et al.22 and by: Kee A, O’Brien P, Pilgram CD, Watson ST. Chem. Commun. 2000; 1521 Zusatzmaterial Zusatzmaterial Supporting Information (PDF)