Synlett 2015; 26(01): 67-72
DOI: 10.1055/s-0034-1379600
cluster
© Georg Thieme Verlag Stuttgart · New York

Regio- and Diastereoselective Vinylogous Mannich Addition of 3-Alkenyl-2-oxindoles to α-Fluoroalkyl Aldimines

Yingle Liu
a  School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, P. R. of China
b  College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. of China
,
Yi Yang
a  School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, P. R. of China
,
Yangen Huang
b  College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. of China
,
Xiu-Hua Xu
c  Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: flq@mail.sioc.ac.cn
,
Feng-Ling Qing*
b  College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. of China
c  Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: flq@mail.sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 24 September 2014

Accepted after revision: 03 November 2014

Publication Date:
20 November 2014 (online)


Abstract

An efficient asymmetric vinylogous Mannich (AVM) addition reaction of 3-alkenyl-2-oxindoles to α-fluoroalkyl aldimines has been developed. This reaction provided various optical active α-alkylidene-δ-amino-δ-fluoroalkyl oxindoles in excellent yields, complete γ-site ­regioselectivity, and excellent diastereoselectivities.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Casiraghi G, Zanardi F, Appendino G, Rassu G. Chem. Rev. 2000; 100: 1929
    • 1b Casiraghi G, Zanardi F, Battistini L, Rassu G. Synlett 2009; 1525
    • 1c Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem. Rev. 2011; 111: 3076
    • 1d Martin SF. Adv. Heterocycl. Chem. 2013; 110: 73

      For selected examples, see:
    • 2a Mohan S, Kerry PS, Bance N, Niikura M, Pinto BM. Angew. Chem. Int. Ed. 2014; 53: 1076
    • 2b Ren W, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 1818
    • 2c Hickin JA, Ahmed A, Fucke K, Ashcroft M, Jones K. Chem. Commun. 2014; 50: 1238
    • 2d Abels F, Lindemann C, Schneider C. Chem. Eur. J. 2014; 20: 1964
    • 2e Sartori A, Dell’Amico L, Battistini L, Curti C, Rivara S, Pala D, Kerry PS, Pelosi G, Casiraghi G, Rassu G, Zanardi F. Org. Biomol. Chem. 2014; 12: 1561
    • 2f Suetsugu S, Nishiguchi H, Tsukano C, Takemoto Y. Org. Lett. 2014; 16: 996
    • 4a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 4b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 4c Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 4d Wang J, Sánchez-Roselló M, Aceña JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432

      For selected reviews, see:
    • 5a Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 5b Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 5c Furuya T, Kamlet AS, Ritter T. Nature (London, U.K.) 2011; 473: 470
    • 5d Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 5e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 5f Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 6a Bur SK, Martin SF. Tetrahedron 2001; 57: 3221
    • 6b Martin SF. Acc. Chem. Res. 2002; 35: 895
    • 6c Karimi B, Enders D, Jafari E. Synthesis 2013; 45: 2769
  • 7 Tsukamoto T, Kitazume T. Chem. Lett. 1992; 21: 1377
  • 8 Spanedda MV, Ourévitch M, Crousse B, Bégué J.-P, Bonnet-Delpon D. Tetrahedron Lett. 2004; 45: 5023
    • 9a Zhao Q.-Y, Yuan Z.-L, Shi M. Tetrahedron: Asymmetry 2010; 21: 943
    • 9b Zhao Q.-Y, Yuan Z.-L, Shi M. Adv. Synth. Catal. 2011; 353: 637
  • 10 Liu Y, Liu J, Huang Y, Qing F.-L. Chem. Commun. 2013; 49: 7492

    • For selected reviews, see:
    • 11a Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 11b Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 11c Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
    • 12a Truong VL, Ménard MS, Dion I. Org. Lett. 2007; 9: 683
    • 12b Truong VL, Pfeiffer JY. Tetrahedron Lett. 2009; 50: 1633
    • 12c Mei H, Xiong Y, Han J, Pan Y. Org. Biomol. Chem. 2011; 9: 1402
    • 12d Zhang H, Li Y, Xu W, Zheng W, Zhou P, Sun Z. Org. Biomol. Chem. 2011; 9: 6502
    • 12e Shibata N, Nishimine T, Shibata N, Tokunaga E, Kawada K, Kagawa T, Sorochinskycde AE, Soloshonok VA. Chem. Commun. 2012; 48: 4124
    • 12f Turcheniuk KV, Poliashko KO, Kukhar VP, Rozhenko AB, Soloshonok VA, Sorochinsky AE. Chem. Commun. 2012; 48: 11519
    • 12g Röschenthaler G.-V, Kukhar VP, Kulik IB, Belik MY, Sorochinsky AE, Rusanov EB, Soloshonok VA. Tetrahedron Lett. 2012; 53: 539
    • 12h Mei H, Xie C, Wu L, Soloshonok VA, Han J, Pan Y. Org. Biomol. Chem. 2013; 11: 8018
    • 12i Shevchuk MV, Kukhar VP, Röschenthaler G.-V, Bassil BS, Kawada K, Soloshonok VA, Sorochinsky AE. RSC Adv. 2013; 3: 6479
    • 12j Xie C, Mei H, Wu L, Soloshonok VA, Han J, Pan Y. Eur. J. Org. Chem. 2014; 1445
    • 12k Mei H, Dai Y, Wu L, Soloshonok VA, Han J, Pan Y. Eur. J. Org. Chem. 2014; 2429
    • 12l Milcent T, Hao J, Kawada K, Soloshonok VA, Ongeri S, Crousse B. Eur. J. Org. Chem. 2014; 3072
    • 12m Xie C, Mei H, Wu L, Han J, Soloshonok VA, Pan Y. J. Fluorine Chem. 2014; 165: 67
    • 12n Wu L, Xie C, Mei H, Soloshonok VA, Han J, Pan Y. J. Org. Chem. 2014; 79: 7677
    • 12o Shibata N, Nishimine T, Shibata N, Tokunaga E, Kawada K, Kagawa T, Aceña JL, Sorochinsky AE, Soloshonok VA. Org. Biomol. Chem. 2014; 12: 1454
    • 12p Mei H, Xiong Y, Xie C, Soloshonok VA, Han J, Pan Y. Org. Biomol. Chem. 2014; 12: 2018
    • 12q Wu L, Xie C, Mei H, Soloshonok VA, Han J, Pan Y. Org. Biomol. Chem. 2014; 12: 4620
    • 12r Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y. Org. Biomol. Chem. 2014; 12: 7836
    • 12s Qian P, Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y. Org. Biomol. Chem. 2014; 12: 7909
    • 12t Xie C, Mei H, Wu L, Soloshonok VA, Han J, Pan Y. RSC Adv. 2014; 4: 4763
    • 12u Xie C, Wu L, Mei H, Soloshonok VA, Han J, Pan Y. Tetrahedron Lett. 2014; 55: 5908
    • 13a Curti C, Rassu G, Zambrano V, Pinna L, Pelosi G, Sartori A, Battistini L, Zanardi F, Casiraghi G. Angew. Chem. Int. Ed. 2012; 51: 6200
    • 13b Rassu G, Zambrano V, Tanca R, Sartori A, Battistini L, Zanardi F, Curti C, Casiraghi G. Eur. J. Org. Chem. 2012; 466
    • 13c Rassu G, Zambrano V, Pinna L, Curti C, Battistini L, Sartori A, Pelosi G, Zanardi F, Casiraghi G. Adv. Synth. Catal. 2013; 355: 1881
    • 13d Ranieri B, Sartori A, Curti C, Battistini L, Rassu G, Pelosi G, Casiraghi G, Zanardi F. Org. Lett. 2014; 16: 932
    • 13e Chen Q, Wang G, Jiang X, Xu Z, Lin L, Wang R. Org. Lett. 2014; 16: 1394
    • 14a Jiang W, Chen C, Marinkovic D, Tran JA, Chen CW, Arellano LM, White NS, Tucci FC. J. Org. Chem. 2005; 70: 8924
    • 14b Senanayake C, Lu BZ, Li N, Han Z, Bakale RP, Wald SA. Org. Lett. 2005; 7: 2599
    • 14c Larhed M, Arefalk A, Wannberg J, Hallberg A. J. Org. Chem. 2006; 71: 1265
  • 15 General Procedure for the Synthesis of α-Alkylidene-δ-amino-δ-fluoroalkyl OxindolesA solution of KHMDS (0.36 mL, 1 M solution in THF) was slowly added to a dried Scheck flask containing 3-alkenyl-2-oxindoles 2 (0.36 mmol) in THF (2.0 mL) at –78 °C under N2 atmosphere. After stirring at –78 °C for 1 h, the mixture of 1 (0.3 mmol) and Ti(Oi-Pr)4 (0.33 mmol) in THF (1.0 mL) was added dropwise, and the mixture was stirred for 12 h at –78 °C. Then sat. aq NH4Cl solution and H2O was added at –78 °C. The mixture was brought to r.t. After 5 min, the mixture was filtered through Celite, and the filtrate was extracted with EtOAc. The combined organic solution was dried over MgSO4. After the removal of volatile solvents under vacuum, the crude product was purified by silica gel column chromatography to give the required product.
  • 16 Analytical Data for Compound 3aMp 60–61 °C. [α]D 17.0 +187.7 (c 0.41, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 7.88 (d, J = 8.2 Hz, 1 H), 7.60 (d, J = 7.8 Hz, 1 H), 7.35 (t, J = 7.9 Hz, 1 H), 7.20 (t, J = 7.7 Hz, 1 H), 4.35 (dd, J = 24.4, 11.2 Hz, 2 H), 4.19–3.96 (m, 1 H), 2.62 (dd, J = 12.7, 3.8 Hz, 1 H), 2.43 (s, 3 H), 1.67 (s, 9 H), 1.06 (s, 9 H). 19F NMR (377 MHz, CDCl3): δ = –74.87 (d, J = 6.5 Hz, 3 F). 13C NMR (101 MHz, CDCl3): δ = 166.5, 152.0, 149.1, 138.3, 128.9, 125.6, 125.2 (q, J = 284.8 Hz), 124.1, 123.9, 123.2, 114.6, 84.6, 57.2, 56.4 (q, J = 30.2 Hz), 35.3, 28.1, 24.2, 22.2. IR (KBr): νmax = 3261, 3060, 2975, 1731, 1613, 1462, 1535, 1300, 1258, 1157, 1090, 841, 748 cm–1. MS (EI): m/z = 497.2 [M + Na]+. ESI-HRMS: m/z [M + Na]+ calcd for C22H29F3N2O4SNa: 497.1692; found: 497.1712.
  • 17 Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
  • 18 Further details of the crystal data can be obtained from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK (CCDC deposition No. 1011207).
  • 19 Vincent MA, Smith AC, Donnard M, Harford PJ, Haywood J, Hillier IH, Clayden J, Wheatley AE. H. Chem. Eur. J. 2012; 18: 11036
  • 20 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600