Synlett 2015; 26(03): 359-362
DOI: 10.1055/s-0034-1379427
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Mediated Reductive Heck Cyclization for the Formation of Tricyclic Sultams

Soumen Joardar*
a   Chembiotek, TCG Lifesciences Ltd., Kolkata-700 091, West Bengal, India   Email: joardarsoumen@gmail.com
b   Department of Chemistry, University of Kalyani, Kalyani-741 235, West Bengal, India
,
Santanu Chakravorty
b   Department of Chemistry, University of Kalyani, Kalyani-741 235, West Bengal, India
,
Saktipada Das*
b   Department of Chemistry, University of Kalyani, Kalyani-741 235, West Bengal, India
› Author Affiliations
Further Information

Publication History

Received: 06 October 2014

Accepted after revision: 18 October 2014

Publication Date:
27 November 2014 (online)


Abstract

Tricyclic sultams have been synthesized through sulfonation and a palladium-mediated Sonogashira cross-coupling followed by a reductive Heck cyclization. The procedure is straightforward and has been carried out under ligand-free conditions.

 
  • References

    • 1a Drews J. Science 2000; 287: 1960
    • 1b Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
    • 2a Silvestri R, Marfè G, Artico M, La Regina G, Lavecchia A, Novellino E, Morgante M, Di Stefano C, Catalano G, Filomeni G, Abruzzese E, Ciriolo MR, Russo MA, Amadori S, Cirilli R, La Torre F, Salimei PS. J. Med. Chem. 2006; 49: 5840
    • 2b Lebegue N, Gallet S, Flouquet N, Carato P, Pfeiffer B, Renard P, Leonce S, Pierre A, Chavatte P, Berthelot P. J. Med. Chem. 2005; 48: 7363
  • 3 Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT. Curr. Med. Chem. 2003; 10: 925
  • 4 Zia-ur-Rehman M, Choudary JA, Ahmad S, Siddiqui HL. Chem. Pharm. Bull. 2006; 54: 1175
  • 5 Valente C, Guedes RC, Moreira R, Iley J, Gut J, Rosenthal PJ. Bioorg. Med. Chem. Lett. 2006; 16: 4115
  • 6 Silvestri R, Marfe G, Artico M, La Regina G, Lavecchia A, Novellino E, Morgante M, Di Stefano C, Catalano G, Filomeni G, Abruzzese E, Ciriolo MR, Russo MA, Amadori S, Cirilli R, La Torre F, Sinibaldi Salimei P. J. Med. Chem. 2006; 49: 5840
  • 7 Lebegue N, Gallet S, Flouquet N, Carato P, Pfeiffer B, Renard P, Leonce S, Pierre A, Chavatte P, Berthelot P. J. Med. Chem. 2005; 48: 7363
  • 8 Francotte P, De Tullio P, Goffin E, Dintilhac G, Graindorge E, Fraikin P, Lestage P, Danober L, Thomas J.-Y, Caignard D.-H, Pirotte B. J. Med. Chem. 2007; 50: 3153
  • 9 Supuran CT. Nat. Rev. Drug Discovery 2008; 7: 168
    • 10a Bravo RD, Canepa AA. Synth. Commun. 2002; 32: 3675
    • 10b Orazi OO, Corral RA, Bravo R. Heteroat. Chem. 1986; 23: 1701
  • 12 Chiacchio U, Corsaro A, Rescifina A, Bkaithan M, Grassi G, Piperno A, Privitera T, Romeo TG. Tetrahedron 2001; 57: 3425
    • 13a Metz P, Seng D, Fröhlich R. Synlett 1996; 741
    • 13b Rogachev VO, Metz P. ARKIVOC 2007; (v): 167
    • 13c Rogatchov VO, Bernsmann H, Schwab P, Fröhlich R, Wibbeling B, Metz P. Tetrahedron Lett. 2002; 43: 4753
    • 13d Plietker B, Seng D, Fröhlich R, Metz P. Tetrahedron 2000; 56: 873
    • 13e Rogachev VO, Filimonov VD, Fröhlich R, Kataeva O, Metz P. Heterocycles 2006; 67: 589
    • 13f Greig IR, Tozer MJ, Wright PT. Org. Lett. 2001; 3: 369
  • 14 Rolfe A, Young K, Volp K, Schoenen F, Neuenswander B, Lushington GH, Hanson PR. Org. Lett. 2001; 3: 369
    • 15a Vasudevan A, Tseng PS, Djuric SW. Tetrahedron Lett. 2006; 47: 8591
    • 15b Merten S, Fröhlich R, Kataeva O, Metz P. Adv. Synth. Catal. 2005; 347: 754
    • 15c Paquette LA, Barton WR. S, Gallucci JC. Org. Lett. 2004; 6: 1313
    • 15d Paquette LA, Dura RD, Fosnaugh N, Marshall S. J. Org. Chem. 2006; 71: 8438
    • 15e Liu X.-Y, Li C.-H, Che C.-M. Org. Lett. 2006; 8: 2707
    • 16a Dauban P, Dodd RH. Org. Lett. 2000; 2: 2327
    • 16b Sherman ES, Chemler SR, Tan TB, Gerlits O. Org. Lett. 2004; 6: 1573
    • 16c Dauban P, Sanière L, Tarrade A, Dodd RH. J. Am. Chem. Soc. 2001; 123: 7707
    • 16d Zeng W, Chemler SR. J. Am. Chem. Soc. 2007; 129: 12948
    • 17a Liang J.-L, Yuan S.-X, Chan PW. H, Che C.-M. Org. Lett. 2002; 4: 4507
    • 17b Padwa A, Flick AC, Leverett CA, Stengel T. J. Org. Chem. 2004; 69: 6377
  • 18 Wrobel Z. Tetrahedron Lett. 2000; 41: 7365
  • 19 Bressy C, Menant C, Piva O. Synlett 2005; 577
  • 20 Jeon KO, Rayabarapu D, Rolfe A, Volp K, Omar I, Hanson PR. Tetrahedron 2009; 65: 4992
  • 21 Wanner J, Harned AM, Probst DA, Poon KW. C, Klein TA, Snelgrove KA, Hanson PA. Tetrahedron Lett. 2002; 43: 917
  • 22 Metz P, Seng D, Fröhlich R, Wibbeling B. Synlett 1996; 741
  • 23 Rogachev VO, Metz P. ARKIVOC 2007; (v): 167
  • 24 Rogachev VO, Filimonov VD, Fröhlich R, Kataeva O, Metz P. Heterocycles 2006; 67: 589
  • 25 Ho KF, Fung DC. W, Wong WY, Chan WH, Lee AW. M. Tetrahedron Lett. 2001; 42: 3121
  • 26 Long DD, Dahl R, Jolivet C, Marshall WJ, Termin AP. Tetrahedron Lett. 2002; 43: 4407
  • 27 Harling JD, Steel PG, Woodsa TM, Yufit DS. Org Biomol. Chem. 2007; 5: 3472
  • 28 van Boxtel LJ, Keorbe S, Noltemeyer M, de Meijere A. Eur. J. Org. Chem. 2001; 12: 2283
  • 31 A mixture of 2-bromo-N-(2-iodophenyl) benzenesulfonamide (2a, 1 mg, 2.29 mmol), 2-methoxyphenylacetylene (0.33 mg, 2.51 mmol), Pd (PPh3)2Cl2 (32 mg, 4.5·10–5 mmol), CuI (21 mg, 1.14·10–4 mmol)), Et3N (0.346 mg, 3.41 mmol), and THF (15 mL) was stirred at r.t. for 2 h. After completion of the reaction, the reaction mixture was filtered through Celite®. H2O (20 mL) was added to the filtrate, and the mixture was extracted with EtOAc (3 × 15 mL). The combined EtOAc extracts were washed with H2O (3 × 15 mL), dried (Na2SO4), and filtered. The solvent was removed, and the residue was purified by column chromatography over silica gel using PE–EtOAc (5:1) as eluent to afford the compound 3a as a yellow solid; mp 125–128 °C; yield: 763 mg (75%). IR (film): 3088, 1609 cm–1. 1HNMR (400 MHz, CDCl3): δ = 3.42 (s, 3 H), 6.72 (s, 1 H), 6.80 (d, 1 H, J = 8.3 Hz), 6.90 (t, 1 H, J = 7.44 Hz), 7.22–7.39 (m, 6 H), 7.50–7.54 (m, 1 H), 7.63–7.65 (m, 1 H), 7.78–7.83 (m, 2 H). 13CNMR (100 MHz, CDCl3): δ = 60.7, 115.7, 117.1, 117.2, 121.3, 121.4, 125.4, 126.3, 126.7, 127.0, 128.9, 130.0, 132.8, 134.9, 136.4, 136.9, 138.6, 139.5, 140.7, 142.9, 143.9, 144.9, 164.0. LC–MS: m/z = 442 [M+ + H], 444 [M+ + H + 2]. Anal. Calcd for C21H16BrNO3S: C, 57.02; H, 3.65; N, 3.17. Found: C, 56.94; H, 3.79; N, 3.36.
  • 32 A mixture of compound 3a (200 mg, 0.45 mmol), HCOONa (46 mg, 0.67 mmol), Pd(PPh3)4 (15.6 mg, 1.35·10–5) in DMF–H2O (10 mL, 7:3) was heated with continuous stirring at 100 °C for 1 h. After completion of the reaction as monitored by TLC, the reaction mixture was cooled, and H2O (10 mL) was added. The mixture was then extracted with EtOAc (3 × 10 mL). The combined EtOAc extracts were washed with H2O (3 × 10 mL) and followed by brine (10 mL). The organic layer was dried (Na2SO4) and filtered. Evaporation in vacuo furnished a crude product that was purified by column chromatography over silica gel, eluting with PE–EtOAc (9:1) to afford product 4a as an off-white gum; yield: 140 mg (85%). IR (film): 3490, 2920 cm–1. 1HNMR (400 MHz, CDCl3): δ = 3.75 (s, 3 H), 6.57 (s, 1 H), 6.95 (d, 1 H, J = 8.3 Hz), 6.99 (t, 1 H, J = 8.3 Hz), 7.20–7.36 (m, 5 H), 7.42–7.53 (m, 5 H), 8.25 (d, 1 H, J = 8.4 Hz). 13CNMR (100 MHz, CDCl3): δ = 110.4, 112.4, 115.5, 119.6, 120.7, 121.6, 123.6, 124.4, 126.6, 128.5, 130.1, 130.5, 131.8, 133.2, 137.3, 137.9, 138.6, 158.5. GC–MS: m/z = 363. ESI-HRMS: m/z [M + H]+ calcd for C21H18NO3S: 364.1007; found: 364.1081.
  • 33 Donets PA, Eycken EV. V. Org. Lett. 2007; 9: 3017