Synlett 2014; 25(19): 2721-2726
DOI: 10.1055/s-0034-1379248
cluster
© Georg Thieme Verlag Stuttgart · New York

An Unprecedented Tandem Annulation of ω-Azido-1-alkynes with Diaryl­iodonium Salts: A Facile Synthesis of Polycyclic Quinolines

Junjie Chen
a   Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
,
Chao Chen*
a   Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
,
Jing Chen
a   Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
b   School of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. of China
,
Hongpeng Gao
a   Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: chenchao01@mails.tsinghua.edu.cn
,
Hongmei Qu
b   School of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 14 August 2014

Accepted after revision: 15 September 2014

Publication Date:
17 October 2014 (online)


Abstract

Polysubstituted quinolines are synthesized through an unprecedented cascade annulation of ω-azido-1-alkynes with diaryliodonium salts, which serve as C2-building blocks. The reaction proceeds smoothly and is catalyzed by Cu(I) catalysts to give various quinolines in good isolated yields with simple operation under mild conditions.

Supporting Information

 
  • References and Notes

    • 1a Xu X, Liu Y, Park C.-M. Angew. Chem. Int. Ed. 2012; 51: 9372
    • 1b Pin F, Comesse S, Sanselme M, Daïch A. J. Org. Chem. 2008; 73: 1975
    • 1c Du W. Tetrahedron 2003; 59: 8649
    • 1d Hutchinson CR. Tetrahedron 1981; 37: 1047
    • 1e Zhao L, Xiong F, Chen W, Chen F. Synthesis 2011; 4045
    • 1f Anderson RJ, Raolji GB, Kanazawa A, Greene AE. Org. Lett. 2005; 7: 2989
    • 1g Liu G, Dong Qi, Yao Y, Yao Z. Org. Lett. 2008; 10: 5393
    • 1h Wall ME, Wani MC, Cook CE, Palmer KH, MacPhail AT, Sim GA. J. Am. Chem. Soc. 1966; 88: 3888
    • 1i Kingsbury WD, Boehm JC, Jakas DR, Holden KG, Hecht SM, Gallagher G, Caranfa MJ, McCabe FL, Faucette LF, Johnson RK, Hertzberg RP. J. Med. Chem. 1991; 34: 98
    • 1j Cragg GM, Newman DJ. J. Nat. Prod. 2004; 67: 232
    • 1k Butler MS. Nat. Prod. Rep. 2005; 22: 162
    • 1l Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
    • 2a Summers WK, Majovski LV, Marsh GM, Tachiki K, Kling AN. Engl. J. Med. 1986; 315: 1241
    • 2b Davis KL, Powchick P. Lancet 1995; 345: 625
    • 2c Albert A, Gledhill WJ. J. Soc. Chem. Ind. 1945; 64: 169
    • 3a Laras Y, Hugues V, Chandrasekaran Y, Blanchard-Desce M, Acher FC, Pietrancosta N. J. Org. Chem. 2012; 77: 8294
    • 3b Wu Y.-C, Liu L, Li H.-J, Wang D, Chen Y.-J. J. Org. Chem. 2006; 71: 6592
    • 3c Bergstrom FW. Chem. Rev. 1944; 35: 7
    • 3d Yu FC, Yan SJ, Hu L, Wang YC, Lin J. Org. Lett. 2011; 13: 4782
    • 3e Knight JA, Porter HK, Calaway PK. J. Am. Chem. Soc. 1944; 66: 1893
    • 3f Heindel ND, Bechara IS, Kennewell PD, Molnar J, Ohnmacht CJ, Lemke SM, Lemke TF. J. Med. Chem. 1968; 11: 1218
    • 3g Chan BK, Ciufolini MA. J. Org. Chem. 2007; 72: 8489
    • 3h Wang K, Herdtweck E, Dömling A. ACS Comb. Sci. 2012; 14: 316
    • 3i Niementowski S. J. Prakt. Chem. 1895; 51: 564
    • 3j Hasaninejad A, Shekouhy M, Zare A. Catal. Sci. Technol. 2012; 2: 201
    • 3k Hasaninejad A, Zare A, Shekouhy M, Ameri-Rad J. Green Chem. 2011; 13: 958
    • 4a Martins MA. P, Frizzo CP, Moreira ND, Buriol L, Machado P. Chem. Rev. 2009; 109: 4140
    • 4b Bañón-Caballero A, Guillena G, Nájera C. J. Org. Chem. 2013; 78: 5349
    • 4c Contelles JM, Pérez-Mayoral E, Samadi A, Carreiras MC, Soriano E. Chem. Rev. 2009; 109: 2652
    • 4d Shiri M, Zolgigol MA, Kruger HG, Tanbakouchian Z. Adv. Heterocycl. Chem. 2011; 102: 139
  • 5 Wang Y, Chen C, Zhang S, Lou Z.-B, Su X, Li M, Wen L. Org. Lett. 2013; 15: 4794
    • 6a Yusubov MS, Maskaev AV, Zhdankin VV. ARKIVOC 2011; (i): 370
    • 6b Merritt EA, Olofsson B. Angew. Chem. 2009; 121: 9214 ; Angew. Chem. Int. Ed.; 2009, 48: 9052
    • 6c Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 6d Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 6e Grushin VV. Chem. Soc. Rev. 2000; 29: 315
    • 6f Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
    • 7a Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
    • 7b Peng J, Chen C, Wang Y, Lou Z.-B, Li M, Xi C, Chen H. Angew. Chem. Int. Ed. 2013; 52: 7574
    • 7c Su X, Chen C, Wang Y, Peng J, Lou Z.-B, Li M. Chem. Commun. 2013; 49: 6752
    • 7d Wang Y, Su X, Chen C. Synlett 2013; 24: 2619
  • 8 Preparation of 3aa; Typical Procedure: 6-Azido-1-phenyl-1-hexyne (2a; 0.3 mmol, 59.7 mg) was added to a solution of diphenyliodonium trifluoromethanesulfonate (1a; 0.6 mmol, 258 mg) and Cu2O (0.045 mmol, 6.5 mg) in anhydrous DCE (2.0 mL) under a N2 atmosphere. The reaction mixture was stirred at 60 °C for 24 h, and then poured into a mixture of sat. aq NaHCO3 (5 mL) and CH2Cl2 (20 mL). The organic phase was separated, washed with sat. aq NaHCO3 (2 × 5 mL), and then dried over anhydrous Na2SO4. Evaporation of the solvent followed by purification on silica gel provided 9-phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (3aa; 55 mg, 75% isolated yield) as a yellow solid. This product has been reported previously.5 9-Phenyl-2,3-dihydro-1H-cyclopenta[b]quinoline (3aa): 1H NMR (400 MHz, CDCl3): δ = 8.07 (dd, J = 8.8, 1.0 Hz, 1 H), 7.66–7.58 (m, 2 H), 7.56–7.42 (m, 3 H), 7.42–7.32 (m, 3 H), 3.24 (t, J = 7.7 Hz, 2 H), 2.91 (t, J = 7.4 Hz, 2 H), 2.17 (quint, J = 7.5 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 167.68, 148.1, 142.8, 136.9, 133.8, 129.4 (2×CH), 129.0, 128.6 (2×CH), 128.4, 128.1, 126.3, 125.8, 125.6, 35.4, 30.5, 23.7. GC-MS: m/z calcd for C18H15N: 245; found: 245.
    • 9a Gorin DJ, Davis NR, Toste FD. J. Am. Chem. Soc. 2005; 127: 11260
    • 9b Motiwala HF, Fehl C, Li S.-W, Hirt S, Porubsky P, Aubé J. J. Am. Chem. Soc. 2013; 135: 9000
    • 9c Tummatorn J, Thongsornkleeb C, Ruchirawata S, Gettongsonga T. Org. Biomol. Chem. 2013; 11: 1463
    • 10a Wang T, Yin H, Jiao N. Adv. Synth. Catal. 2013; 355: 1207
    • 10b Meng X, Xu X, Gao T, Chen B. Eur. J. Org. Chem. 2010; 5409
  • 11 Preparation of 5aa; Typical Procedure: 7-Azido-1-phenyl-1-heptyne (4a; 0.3 mmol, 63.9 mg) was added to a solution of diphenyliodonium trifluoromethanesulfonate (1a; 0.6 mmol, 258 mg) and Cu2O (0.045 mmol, 6.5 mg) in anhydrous DCE (2.0 mL) under a N2 atmosphere. The reaction mixture was stirred at 60 °C for 24 h, and then poured into a mixture of sat. aq NaHCO3 (5 mL) and CH2Cl2 (20 mL). The organic phase was separated, washed with sat. aq NaHCO3 (2 × 5 mL), and then dried over anhydrous Na2SO4. Evaporation of the solvent followed by purification on silica gel provided 9-phenyl-1,2,3,4-tetrahydroacridine (5aa; 52 mg, 67% isolated yield) as a yellow solid. This product has been reported5 previously. 9-Phenyl-1,2,3,4-tetrahydroacridine (5aa): 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 8.5 Hz, 1 H), 7.60 (ddd, J = 8.3, 5.1, 3.1 Hz, 1 H), 7.55–7.42 (m, 3 H), 7.35–7.27 (m, 2 H), 7.23 (dd, J = 8.0, 1.4 Hz, 2 H), 3.20 (t, J = 6.6 Hz, 2 H), 2.60 (t, J = 6.5 Hz, 2 H), 2.02–1.88 (m, 2 H), 1.84–1.70 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 159.2, 146.6, 146.4, 137.3, 129.2 (2×CH), 128.7 (2×CH), 128.5, 128.5, 127.8, 126.8, 125.9, 125.5, 34.4, 28.2, 23.2, 23.1. GC-MS: m/z calcd for C19H17N: 259; found: 259.
  • 12 CCDC-1019165 (3da) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 13 Preparation of 7aa; Typical Procedure: 8-Azido-1-phenyl-1-octyne (6a; 0.3 mmol, 68.1 mg) was added to a solution of diphenyliodonium trifluoromethanesulfonate (1a; 0.6 mmol, 258 mg) and Cu2O (0.045 mmol, 6.5 mg) in anhydrous DCE (2.0 mL) under a N2 atmosphere. The reaction mixture was stirred at 60 °C for 24 h, and then poured into a mixture of sat. aq NaHCO3 (5 mL) and CH2Cl2 (20 mL). The organic phase was separated, washed with sat. aq NaHCO3 (2 × 5 mL), and then dried over anhydrous Na2SO4. Evaporation of the solvent followed by purification on silica gel provided 11-phenyl-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinoline (7aa; 59 mg, 72% isolated yield) as a yellow solid. This product has been reported5 previously. 11-Phenyl-7,8,9,10-tetrahydro-6H-cyclohepta[b]quinoline (7aa): 1H NMR (301 MHz, CDCl3): δ = 8.03 (d, J = 8.3 Hz, 1 H), 7.60 (ddd, J = 8.3, 6.5, 1.8 Hz, 1 H), 7.55–7.42 (m, 3 H), 7.36–7.27 (m, 2 H), 7.26–7.19 (m, 2 H), 3.32–3.23 (m, 2 H), 2.73–2.66 (m, 2 H), 1.91–1.77 (m, 4 H), 1.67–1.53 (m, 2 H). 13C NMR (76 MHz, CDCl3): δ = 165.0, 146.0, 145.6, 137.8, 134.0, 129.6 (2×CH), 128.8, 128.6 (2×CH), 128.3, 127.8, 127.1, 126.5, 125.7, 40.4, 32.1, 30.9, 28.7, 27.2. GC-MS: m/z calcd for C20H19N: 273; found: 273.

    • Selected examples:
    • 14a Peng J, Chen C, Chen J, Su X, Xi C, Chen H. Org. Lett. 2014; 16: 3776
    • 14b Collins BS. L, Suero MG, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 5799
    • 14c Cahard E, Bremeyer N, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
    • 14d Walkinshaw AJ, Xu W, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
    • 15a Povarov LS. Russ. Chem. Rev. 1967; 36: 656
    • 15b Kouznetsov VV. Tetrahedron 2009; 65: 2721