Synlett 2015; 26(03): 340-344
DOI: 10.1055/s-0034-1379247
cluster
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Catalyzed Directed Alkylation of Olefinic C–H Bond with Primary and Secondary Alkyl Chlorides

Takeshi Yamakawa
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +6567911961   Email: nyoshikai@ntu.edu.sg
,
Yuan Wah Seto
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +6567911961   Email: nyoshikai@ntu.edu.sg
,
Naohiko Yoshikai*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Fax: +6567911961   Email: nyoshikai@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 28 August 2014

Accepted: 15 September 2014

Publication Date:
15 October 2014 (online)


Abstract

A cobalt–N-heterocyclic carbene catalytic system promotes pyridine-directed olefinic C–H alkylation reactions using a variety of primary and secondary alkyl chlorides under mild conditions. Radical clock experiments suggest that the reaction involves single-electron transfer from the cobalt intermediate to the alkyl chloride.

Supporting Information

 
  • References and Notes

  • 1 Ackermann L. Chem. Commun. 2010; 46: 4866

    • For selected reviews, see:
    • 2a Kakiuchi F, Kochi T. Synthesis 2008; 3013
    • 2b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 2c Ackermann L. Chem. Rev. 2011; 111: 1315
    • 2d Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
  • 3 Ackermann L, Novák P, Vicente R, Hofmann N. Angew. Chem. Int. Ed. 2009; 48: 6045
    • 4a Zhang Y.-H, Shi B.-F, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 6097
    • 4b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
    • 4c Zhao Y.-S, Chen G. Org. Lett. 2011; 13: 4850
    • 5a Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
    • 5b Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 6a Gao K, Yoshikai N. J. Am. Chem. Soc. 2013; 135: 9279
    • 6b Punji B, Song WF, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
    • 6c Gao K, Yamakawa T, Yoshikai N. Synthesis 2014; 46: 2024
    • 7a Ilies L, Matsubara T, Ichikawa S, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 13126
    • 7b Fruchey ER, Monks BM, Cook SP. J. Am. Chem. Soc. 2014; 136: 13130
    • 7c Monks BM, Fruchey ER, Cook SP. Angew. Chem. Int. Ed. 2014; 53: 11065
  • 8 Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
  • 9 For an example of cobalt-catalyzed olefinic C–H functionalization, see: Yamakawa T, Yoshikai N. Org. Lett. 2013; 15: 196

    • For examples of other types of olefinic C–H functionalization of 2-alkenylpyridines, see:
    • 10a Oi S, Sakai K, Inoue Y. Org. Lett. 2005; 7: 4009
    • 10b Ackermann L, Born R, Alvarez-Bercedo P. Angew. Chem. Int. Ed. 2007; 46: 6364
    • 10c Kuninobu Y, Fujii Y, Matsuki T, Nishina Y, Takai K. Org. Lett. 2009; 11: 2711
    • 10d Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2011; 133: 7672
    • 10e Li Y, Zhang X.-S, Zhu Q.-L, Shi Z.-J. Org. Lett. 2012; 14: 4498
    • 11a Li B, Wu Z.-H, Gu Y.-F, Sun C.-L, Wang B.-Q, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 1109
    • 11b Yamakawa T, Yoshikai N. Chem. Asian J. 2014; 9: 1242
  • 12 Klein H.-F, Camadanli S, Beck R, Leukel D, Flörke U. Angew. Chem. Int. Ed. 2005; 44: 975
  • 13 Wakabayashi K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2001; 123: 5374
    • 14a Ohmiya H, Wakabayashi K, Yorimitsu H, Oshima K. Tetrahedron 2006; 62: 2207
    • 14b Ohmiya H, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 1886
    • 14c Cahiez G, Chaboche C, Duplais C, Moyeux A. Org. Lett. 2009; 11: 277

      For reviews on cobalt-catalyzed cross-coupling reactions, see:
    • 15a Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 15b Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
    • 15c Gosmini C, Begouin JM, Moncomble A. Chem. Commun. 2008; 3221
    • 15d Yorimitsu H, Oshima K. Pure Appl. Chem. 2006; 78: 441
  • 16 General Procedure for 2-{[1,1′-Bi(cyclohexan)]-1-en-2-yl}pyridine (3aa): In a 10-mL Schlenk tube were placed CoBr2 (0.3 M in THF, 0.10 mL, 0.030 mmol), 1,3-diisopropylbenzimidazolium bromide (L2; 8.5 mg, 0.030 mmol), 2-(cyclohex-1-en-1-yl)pyridine (1a; 47.8 mg, 0.30 mmol), chlorocyclohexane (2a; 53.6 μL, 0.45 mmol), TMEDA (90 μL, 0.60 mmol) and THF (0.28 mL). To the mixture was added a THF solution of t-BuCH2MgBr (0.96 M, 0.63 mL, 0.60 mmol) dropwise at 0 °C. The reaction mixture was stirred at r.t. for 6 h, and then quenched by the addition H2O (1.0 mL). The resulting mixture was extracted with EtOAc (3 × 3 mL). The combined organic layer was dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (eluent: hexane–EtOAc, 100:12) to afford a mixture of 3aa and 2-(2-neopentylcyclohex-1-en-1-yl)pyridine in a ratio of 30:1 (determined by 1H NMR) as a yellow solid (69.2 mg, 92% yield for 3aa). 1H NMR (400 MHz, CDCl3): δ = 1.00–1.09 (m, 3 H), 1.27–1.37 (m, 2 H), 1.48–1.55 (m, 3 H), 1.62–1.74 (m, 6 H), 2.05–2.12 (m, 3 H), 2.30–2.33 (m, 2 H), 7.09–7.11 (m, 2 H), 7.58–7.63 (m, 1 H), 8.56–8.60 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 23.2, 23.3, 24.5, 26.3, 26.6 (2 × C), 31.0, 31.2 (2 × C), 42.1, 121.0, 123.4, 131.2, 136.0, 140.0, 149.5, 162.9. HRMS (ESI): m/z [M + H]+ calcd for C17H24N: 242.1909; found: 242.1908.
    • 17a Ilies L, Chen Q, Zeng X, Nakamura E. J. Am. Chem. Soc. 2011; 133: 5221
    • 17b Gao K, Yoshikai N. J. Am. Chem. Soc. 2011; 133: 400
    • 17c Gao K, Yoshikai N. Angew. Chem. Int. Ed. 2011; 50: 6888
    • 17d Lee P.-S, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 1240