Synlett 2014; 25(18): 2644-2648
DOI: 10.1055/s-0034-1379101
letter
© Georg Thieme Verlag Stuttgart · New York

The Catalytic Synthesis of Carboniolamide: The Role of sp 3 Hybridized Oxygen

Yi Zhanga, Yuchi Daia, Guigen Lia, b, Xu Cheng*a
  • aInstitute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. of China
  • bDepartment of Chemistry and Biochemistry, Texas Tech University, Memorial Circle & Boston, Lubbock, TX 79409-1061, USA   Fax: +86(25)84687372   Email: chengxu@nju.edu.cn
Further Information

Publication History

Received: 19 July 2014

Accepted after revision: 18 August 2014

Publication Date:
17 September 2014 (eFirst)

Abstract

A catalytic synthesis of carboniolamide has been reported. The strategy was straightforward with aldehyde and amide as starting materials. The products can be isolated as precipitates from the reaction mixture. The factor that stabilizes the labile functionality of hemiaminal was elucidated as a sp 3 hybridized oxygen.

Supporting Information

 
  • References and Notes

  • 1 Iwasawa T, Hooley RJ, Rebek J. Science 2007; 317: 493
  • 2 Tanaka J, Higa T. Tetrahedron Lett. 1996; 37: 5535
    • 3a Field JJ, Singh AJ, Kanakkanthara A, Halafihi T, Northcote PT, Miller JH. J. Med. Chem. 2009; 52: 7328
    • 3b Ghosh AK, Cheng X, Bai R, Hamel E. Eur. J. Org. Chem. 2012; 4130
    • 3c Zurwerra D, Glaus F, Betschart L, Schuster J, Gertsch J, Ganci W, Altmann K.-H. Chem. Eur. J. 2012; 18: 16868
    • 3d Field JJ, Pear B, Calvo E, Canales A, Zurwerra D, Trigili C, Rodriguez-Salarichs J, Matesanz R, Kanakkanthara A, Wakefield J, Singh AJ, Altmann K.-H, Diaz JF. Chem. Biol. 2012; 19: 686
  • 4 Prota AE, Bargsten K, Zurwerra D, Field JJ, Diaz JF, Altmann K.-H, Steinmetz MO. Science 2013; 339: 587
    • 5a Rowland GB, Zhang H, Rowland EB, Chennamadhavuni S, Wang Y, Antilla JC. J. Am. Chem. Soc. 2005; 127: 15696
    • 5b Liang Y, Rowland EB, Rowland GB, Perman JA, Anilla JC. Chem. Commun. 2007; 4477
  • 6 Cheng X, Vellalath S, Goddard R, List B. J. Am. Chem. Soc. 2008; 130: 15786
  • 7 Rueping M, Antonchick AP, Sugiono E, Grenader K. Angew. Chem. Int. Ed. 2009; 48: 908
  • 8 Honjo T, Phipps RJ, Rauniyar V, Toste FD. Angew. Chem. Int. Ed. 2012; 51: 9684
  • 9 Cheng D.-J, Tian Y, Tian S.-K. Adv. Synth. Catal. 2012; 354: 995
  • 10 Guggenheim KG, Toru H, Kurth MJ. Org. Lett. 2012; 14: 3732
  • 11 Alix A, Lalli C, Retailleau P, Masson G. J. Am. Chem. Soc. 2012; 134: 10389
  • 12 Huang D, Li X, Xu F, Li L, Lin X. ACS Catal. 2013; 3: 2244
    • 13a Li G, Fronczek FR, Antilla JC. J. Am. Chem. Soc. 2008; 130: 12216
    • 13b Courant T, Masson G. Chem. Eur. J. 2012; 18: 423
    • 13c Hashimoto T, Naktsu H, Takiguchi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 16010
    • 13d Li T.-Z, Wang X.-B, Sha F, Wu X.-Y. Tetrahedorn 2013; 69: 7314
    • 13e Kim H, Rhee YH. J. Am. Chem. Soc. 2012; 134: 4011
  • 14 Vellalath S, Coric I, List B. Angew. Chem. Int. Ed. 2010; 49: 9749
    • 15a Coric I, List B. Nature (London) 2012; 483: 7389
    • 15b Kim JH, Coric I, Vellalath S, List B. Angew. Chem. Int. Ed. 2013; 52: 16
  • 16 Sun Z, Winschel GA, Borovika A, Nagorny P. J. Am. Chem. Soc. 2012; 134: 8074
  • 17 Wu H, He Y.-P, Gong LZ. Org. Lett. 2013; 15: 460
  • 18 Palmes JA, Paioti PH. S, Souza LP, Aponick A. Chem. Eur. J. 2013; 19: 11613
  • 19 Smith AB. III, Safovo IG, Corbett RM. J. Am. Chem. Soc. 2001; 123: 12426
  • 20 Hoye TR, Hu M. J. Am. Chem. Soc. 2003; 125: 9576
  • 21 Kiren S, Shangguan N, Williams L. Tetrahedron Lett. 2007; 48: 7456
  • 22 Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
  • 23 Uenishi J, Iwamoto T, Tanaka J. Org. Lett. 2009; 11: 3262
  • 24 Cheng X, Ghosh AK. Org. Lett. 2011; 13: 4108
    • 25a Bussolari JC, Beers K, lalan P, Murray WV, Gauthier D, McDonnell P. Chem. Lett. 1998; 27: 787
    • 25b Troast DM, Porco JA. Jr. Org. Lett. 2002; 4: 991
  • 26 Zhang Y, Zhong ZH, Han YM, Han RR, Cheng X. Tetrahedron 2013; 69: 11080

    • For some examples of the functional group assisted purification, see:
    • 27a Pindi S, Wu J, Li G. J. Org. Chem. 2013; 76: 4006
    • 27b Sun H, Zhang H, Han J, Pan Y, Li G. Eur. J. Org. Chem. 2013; 22: 4744
  • 28 General Procedure for the Synthesis of the Carboniolamide: To a reaction vial charged with amide (1.0 mmol), glyoxylate (1.0 mmol), and diphenyl hydrogen phosphate (25.0 mg, 0.1 mmol) was added Et2O (4 mL). Then the sealed reaction mixture was stirred at r.t. for the specified time. The obtained slurry was then filtered, and the precipitate was washed with a minimum amount of cold Et2O to give the compound as a white powder. 1g: mp 106.2–108.1 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 9.46 (d, J = 7.8 Hz, 1 H), 7.92 (d, J = 8.5 Hz, 2 H), 7.56 (d, J = 8.5 Hz, 2 H), 6.63 (d, J = 6.1 Hz, 1 H), 5.64 (t, J = 6.9 Hz, 1 H), 4.15 (q, J = 7.1 Hz, 2 H), 1.21 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, DMSO-d 6): δ = 170.26, 165.43, 137.01, 132.72, 129.93, 128.92, 72.44, 61.25, 14.49. IR (thin film): 1015, 1033, 1102, 1155, 1239, 1312, 1345, 1487, 1536, 1598, 1649, 1655, 1746, 3304, 3402 cm–1. MS (ESI): m/z [M + Na+] calcd for C11H12ClNO4Na: 280; found: 280. HRMS (ESI): m/z [M + Na+] calcd for C11H12ClNO4Na: 280.0353; found: 280.0356. 1n: mp 125.3–127.1 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 8.43 (d, J = 8.6 Hz, 1 H), 7.90 (d, J = 7.5 Hz, 2 H), 7.74 (t, J = 8.1 Hz, 2 H), 7.32–7.45 (m, 4 H), 6.50 (s, 1 H), 5.29 (d, J = 8.6 Hz, 1 H), 4.20–4.36 (m, 3 H), 4.13 (q, J = 7.1 Hz, 2 H), 1.21 (t, J = 7.1 Hz, 3 H). 13C NMR (101 MHz, DMSO-d6 ): δ = 170.04, 155.92, 144.24, 144.14, 141.18, 128.14, 127.54, 125.83, 125.76, 120.59, 73.73, 66.34, 61.25, 46.94, 14.47. IR (thin film): 740, 758, 1042, 1093, 1224, 1267, 1331, 1449, 1530, 1703, 1721, 1753, 3328 cm–1. MS (ESI): m/z [M – H+] calcd for C19H19NO5: 340; found: 340. HRMS (ESI): m/z [M + Na+] calcd for C19H19NO5Na: 364.1161; found: 364.1163.
  • 29 Adsmond DA, Grant DJ. W. J. Pharm. Sci. 2001; 90: 2058