Synlett 2015; 26(05): 676-680
DOI: 10.1055/s-0034-1378948
letter
© Georg Thieme Verlag Stuttgart · New York

Boron-Catalyzed Arylthiooxygenation of N-Allylamides: Synthesis of (Arylsulfanyl)oxazolines

Jipan Yu
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
,
Hua Tian
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
,
Chang Gao
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
,
Haijun Yang
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
,
Yuyang Jiang
b   Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
,
Hua Fu*
a   Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China
b   Key Laboratory of Chemical Biology (Guangdong Province), Graduate School of Shenzhen, Tsinghua University, Shenzhen 518057, P. R. of China   Email: fuhua@mail.tsinghua.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 26 October 2014

Accepted after revision: 24 November 2014

Publication Date:
08 January 2015 (online)


Abstract

Oxazoles and aryl sulfides are chemical entities that are found in many natural products and biologically and pharmaceutically active molecules. It is therefore highly desirable to develop an efficient and practical approach to the synthesis of arylsulfanyl-substituted oxazolines. We developed a simple and efficient method for boron-catalyzed sequential arylsulfanylation and oxygenation of N-allylamides. The protocol uses readily available 1-(arylsulfanyl)pyrrolidine-2,5-diones as the arylsulfanylation reagents and inexpensive boron trifluoride etherate as the catalyst; no ligands or additives are required, and it is not necessary to purge the reaction vessel of air. The method therefore provides an efficient and practical strategy for the synthesis of arylsulfanyl-substituted heterocycles.

Supporting Information

 
  • References


    • For selected reviews, see:
    • 1a Wipf P. Chem. Rev. 1995; 95: 2115
    • 1b Yeh VS. C. Tetrahedron 2004; 60: 11995
    • 1c Riego E, Hernández D, Albericio F, Álvarez M. Synthesis 2005; 1907
    • 1d Jin Z. Nat. Prod. Rep. 2006; 23: 464

    • For selected papers, see:
    • 1e Adamczeski M, Quinoa E, Crews P. J. Am. Chem. Soc. 1988; 110: 1598
    • 1f Lindquist N, Fenical W, Van Duyne GD, Clardy J. J. Am. Chem. Soc. 1991; 113: 2303
    • 1g Li J, Jeong S, Esser L, Harran PG. Angew. Chem. Int. Ed. 2001; 40: 4765
    • 1h Skepper CK, Quach T, Molinski TF. J. Am. Chem. Soc. 2010; 132: 10286
    • 2a Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
    • 2b Wasserman HH, McCarthy KE, Prowse KS. Chem. Rev. 1986; 86: 845
    • 2c Jin Z. Nat. Prod. Rep. 2003; 20: 584
    • 2d Wipf P, Aoyama Y, Benedum TE. Org. Lett. 2004; 6: 3593
    • 2e Jin Z. Nat. Prod. Rep. 2009; 26: 382
    • 2f Wan C, Gao L, Wang Q, Zhang J, Wang Z. Org. Lett. 2010; 12: 3902
    • 2g He W, Li C, Zhang L. J. Am. Chem. Soc. 2011; 133: 8482
    • 2h Cano I, Álvarez E, Nicasio MC, Pérez PJ. J. Am. Chem. Soc. 2011; 133: 191
    • 2i Badillo JJ, Arevalo GE, Fettinger JC, Franz AK. Org. Lett. 2011; 13: 418
    • 3a Liu L, Stelmach JE, Natarajan SR, Chen M.-H, Singh SB, Schwartz CD, Fitzgerald CE, O’Keefe SJ, Zaller DM, Schmatz DM, Doherty JB. Bioorg. Med. Chem. Lett. 2003; 13: 3979
    • 3b Kaldor SW, Kalish VJ, Davies JF, Shetty BV, Fritz JE, Appelt K, Burgess JA, Campanale KM, Chirgadze NY, Clawson DK, Dressman BA, Hatch SD, Khalil DA, Kosa MB, Lubbehusen PP, Muesing MA, Patick AK, Reich SH, Su KS, Tatlock JH. J. Med. Chem. 1997; 40: 3979
    • 4a Hartwig JF. Angew. Chem. Int. Ed. 1998; 37: 2046
    • 4b Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
    • 4c Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 4d Beletskaya IP, Cheprakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 4e Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 4f Tran LD, Popov I, Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 4g Yang Y, Hou W, Qin L, Du J, Feng H, Zhou B, Li Y. Chem. Eur. J. 2014; 20: 416

      For reviews on transition-metal-catalyzed C–S coupling reaction, see:
    • 5a Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
    • 5b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 5c Eichman CC, Stambuli JP. Molecules 2011; 16: 590
    • 5d Liu H, Jiang X. Chem. Asian J. 2013; 8: 2546
    • 6a Abd El Samii ZK. M, Al Ashmawy MI, Mellor JM. J. Chem. Soc., Perkin Trans. 1 1988; 2517
    • 6b Abd El Samii ZK. M, Al Ashmawy MI, Mellor JM. Tetrahedron Lett. 1987; 28: 1949
    • 7a McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 7b Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
    • 7c Jacques B, Muñiz K In Catalyzed Carbon–Heteroatom Bond Formation . Yudin AK. Wiley-VCH; Weinheim: 2011. Chap. 4, 119
    • 8a Li Y, Song D, Dong VM. J. Am. Chem. Soc. 2008; 130: 2962
    • 8b Wang A, Jiang H, Chen H. J. Am. Chem. Soc. 2009; 131: 3846
    • 8c Giglio BC, Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 9a Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 1926
    • 9b Wang H, Wang Y, Liang D, Liu L, Zhang J, Zhu Q. Angew. Chem. Int. Ed. 2011; 50: 5678
    • 9c Desai LV, Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
    • 9d Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
    • 9e Alexanian EJ, Lee C, Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
    • 9f Fuller PH, Kim J.-W, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
    • 9g Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
    • 9h de Haro T, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 906
    • 10a Ingalls EL, Sibbald PA, Kaminsky W, Michael FE. J. Am. Chem. Soc. 2013; 135: 8854
    • 10b Zhao B, Peng X, Zhu Y, Ramirez TA, Cornwall RG, Shi Y. J. Am. Chem. Soc. 2011; 133: 20890
    • 10c Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K. Angew. Chem. Int. Ed. 2011; 50: 9478
    • 10d Iglesias Á, Pérez EG, Muñiz K. Angew. Chem. Int. Ed. 2010; 49: 8109
    • 10e Sibbald PA, Rosewall CF, Swartz RD, Michael FE. J. Am. Chem. Soc. 2009; 131: 15945
    • 10f Muñiz K, Hövelmann CH, Streuff J. J. Am. Chem. Soc. 2008; 130: 763
    • 10g Bar GL. J, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
    • 11a Wu T, Yin G, Liu G. J. Am. Chem. Soc. 2009; 131: 16354
    • 11b Li Z, Song L, Li C. J. Am. Chem. Soc. 2013; 135: 4640
    • 11c Kong W, Feige P, de Haro T, Nevado C. Angew. Chem. Int. Ed. 2013; 52: 2469
    • 12a Michael FE, Sibbald PA, Cochran BM. Org. Lett. 2008; 10: 793
    • 12b Muñiz K, Höelmann CH, Campos-Gómez E, Barluenga J, González JM, Streuff J, Nieger M. Chem. Asian J. 2008; 3: 776
    • 12c Bovino MT, Chemler SR. Angew. Chem. Int. Ed. 2012; 51: 3923
    • 13a Zhang B, Studer A. Org. Lett. 2013; 15: 4548
    • 13b Trahanovsky WS, Robbins MD. J. Am. Chem. Soc. 1971; 93: 5256

      For selected examples, see:
    • 14a Deb A, Manna S, Modak A, Patra T, Maity S, Maiti D. Angew. Chem. Int. Ed. 2013; 52: 9747
    • 14b Jiang X.-Y, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 14177
    • 14c Zhu R, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 12655
    • 14d Egami H, Kawamura S, Miyazaki A, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 7841
    • 14e Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 14f Feng C, Loh T.-P. Chem. Sci. 2012; 3: 3458
    • 14g Li Y, Studer A. Angew. Chem. Int. Ed. 2012; 51: 8221
    • 14h Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567

      For selected examples, see:
    • 15a Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
    • 15b Wei W.-T, Zhou M.-B, Fan J.-H, Liu W, Song R.-J, Liu Y, Hu M, Xie P, Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 3638
    • 15c Zhou M.-B, Song R.-J, Ouyang X.-H, Liu Y, Wei W.-T, Deng G.-B, Li J.-H. Chem. Sci. 2013; 4: 2690
    • 15d Wu T, Mu X, Liu G. Angew. Chem. Int. Ed. 2011; 50: 12578
    • 15e Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561
    • 15f Li Y.-M, Sun M, Wang H.-L, Tian Q.-P, Yang S.-D. Angew. Chem. Int. Ed. 2013; 52: 3972
    • 15g Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
    • 15h Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082
    • 15i Matcha K, Narayan R, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985

      For selected examples, see:
    • 16a Mu X, Wu T, Wang H.-y, Guo Y.-l, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 16b Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
    • 16c Dong X, Song R, Wang Q, Tang X.-Y, Shi M. Chem. Eur. J. 2013; 19: 16910
    • 16d Egami H, Shimizu R, Sodeoka M. J. Fluorine Chem. 2013; 152: 51
    • 16e Yang F, Klumpha P, Liang Y.-M, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 16f Lu Q, Liu C, Peng P, Liu Z, Fu L, Huang J, Lei A. Asian J. Org. Chem. 2014; 3: 273
    • 16g Fu W, Xu F, Fu Y, Zhu M, Yu J, Xu C, Zou D. J. Org. Chem. 2013; 78: 12202
    • 16h Zhou B, Hou W, Yang Y, Feng H, Li Y. Org. Lett. 2014; 16: 1322
    • 16i Shi L, Yang X, Wang Y, Yang H, Fu H. Adv. Synth. Catal. 2014; 356: 1021
    • 16j Shi L, Wang Y, Yang H, Fu H. Org. Biomol. Chem. 2014; 12: 4070
    • 16k Kong W, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
  • 17 5-(Arylsulfanyl)-4,5-dihydro-1,3-oxazoles 3a–af; General Procedure A 25-mL Schlenk tube containing a magnetic stirrer was charged with allylamide 1 (0.2 mmol), 1-(arylthio)pyrrolidine-2,5-dione 2 (0.3 mmol), and anhyd DCE (2.0 mL). BF3·OEt2 (0.04 mmol) was added, the tube was sealed, and the mixture was stirred at 105 °C until the reaction was complete (TLC). The solution was concentrated in a rotary evaporator and the residue was purified by column chromatography (silica gel, PE–EtOAc). Data for three representative products are given below. 5-Phenyl-5-[(phenylsulfanyl)methyl]-2-(4-tolyl)-4,5-dihydro-1,3-oxazole (3b) Eluent: PE–EtOAc (5:1); colorless film; yield: 55 mg (77%). 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 7.4 Hz, 2 H), 7.42–7.29 (m, 7 H), 7.21–7.13 (m, 5 H), 4.47 (d, J = 14.7 Hz, 1 H), 4.22 (d, J = 14.7 Hz, 1 H), 3.62 (d, J = 13.9 Hz, 1 H), 3.51 (d, J = 13.9 Hz, 1 H), 2.40 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 163.2, 143.7, 141.9, 136.5, 130.4, 129.1, 128.9, 128.7, 128.3, 127.9, 126.5, 124.9, 124.8, 88.6, 66.5, 46.1, 21.7. ESI-MS: m/z = 360.4 [M + H]+. 5-[(Phenylsulfanyl)methyl]-2-(2-thienyl)-4,5-dihydro-1,3-oxazole (3v) Eluent: PE–EtOAc (5:1); colorless film; yield: 37 mg (67%). 1H NMR (600 MHz, CDCl3): δ = 7.49 (d, J = 3.3 Hz, 1 H), 7.40 (d, J = 7.4 Hz, 3 H), 7.27 (t, J = 7.7 Hz, 2 H), 7.20 (t, J = 7.4 Hz, 1 H), 7.03 (t, J = 4.3 Hz, 1 H), 4.84–4.79 (m, 1 H), 4.11 (dd, J = 14.8, 9.4 Hz, 1 H), 3.85 (dd, J = 14.8, 6.7 Hz, 1 H), 3.31 (dd, J = 13.8, 5.4 Hz, 1 H), 3.05 (dd, J = 13.8, 7.2 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 159.7, 134.9, 130.5, 130.4, 130.2, 130.0, 129.2, 127.6, 126.9, 78.9, 59.7, 38.4. ESI-MS: m/z = 298.3 [M + Na]+. 4-Methyl-5-phenyl-5-[(phenylsulfanyl)methyl]-2-(4-tolyl)-4,5-dihydro-1,3-oxazole (3ad) Eluent: PE–EtOAc (5:1); light-yellow film; yield: 58 mg (78%). 1H NMR (600 MHz, CDCl3): δ = 7.78 (d, J = 8.1 Hz, 2 H), 7.36 (t, J = 7.4 Hz, 2 H), 7.33–7.28 (m, 5 H), 7.19 (d, J = 8.0 Hz, 2 H), 7.15 (d, J = 7.3 Hz, 2 H), 7.11 (t, J = 7.2 Hz, 1 H), 4.46 (q, J = 6.9 Hz, 1 H), 3.67 (s, 2 H), 2.40 (s, 3 H), 0.84 (d, J = 6.9 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.1, 142.1, 139.0, 136.8, 130.4, 129.1, 128.9, 128.5, 128.3, 127.7, 126.4, 125.9, 124.6, 91.4, 70.4, 45.4, 21.7, 19.4. ESI-MS: m/z = 374.1 [M + H]+.
    • 18a Prakash GK. S, Mathew T, Hoole D, Esteves PM, Wang Q, Rasul G, Olah GA. J. Am. Chem. Soc. 2004; 126: 15770
    • 18b Tian H, Zhu C, Yang H, Fu H. Chem. Commun. 2014; 50: 8875
    • 19a Ettari R, Nizi E, Di Francesco ME, Dude M.-A, Pradel G, Vičík R, Schirmeister T, Micale N, Grasso S, Zappalà M. J. Med. Chem. 2008; 51: 988
    • 19b Bachovchin D, Zuhl A, Speers A, Wolfe M, Weerapana E, Brown S, Rosen H, Cravatt B. J. Med. Chem. 2011; 54: 5229
    • 19c Neamati N, Mazumder A, Zhao H, Sunder S, Burke TR. Jr, Schultz RJ, Pommier Y. Antimicrob. Agents Chemother. 1997; 41: 385
    • 19d Colwell WT, Chan G, Brown VH, DeGraw JI, Peters JH, Morrison NE. J. Med. Chem. 1974; 17: 142
    • 19e Sharpe TR, Cherkofsky SC, Hewes WE, Smith DH, Gregory WA, Haber SB, Leadbetter MR, Whitney JG. J. Med. Chem. 1985; 28: 1188
    • 19f Jones TR, Webber SE, Varney MD, Rami Reddy M, Lewis KK, Kathardekar V, Mazdiyasni H, Deal J, Nguyen D, Welsh KM, Webber S, Johnston A, Matthews DA, Smith WW, Janson CA, Bacquet RJ, Howland EF, Booth CL. J, Herrmann SM, Ward RW, White J, Bartlett CA, Morse CA. J. Med. Chem. 1997; 40: 677
    • 20a Tetrahedron Organic Chemistry Series . Vol. 10. Simpkins NS. Elsevier; Amsterdam: 1993: 1
    • 20b Procter DJ. J. Chem. Soc., Perkin Trans. 1 2000; 835
  • 21 Shen T, Yuan Y, Song S, Jiao N. Chem. Commun. 2014; 50: 4115